OpenBSD’s New Suspend and Resume Framework

Paul Irofti
pirofti@openbsd.org

10th European BSD Conference
October 6–9, 2011
Maarssen, The Netherlands
Outline

1 Introduction
 - History
 - The Winds of Change

2 Device Configuration

3 Activate Functions
 - Changes
 - Quiesce

4 APM and ACPI
 - Design
 - APM
 - ACPI

5 Issues
 - Overview
 - Quirks

6 Conclusions
Early Days

KISS

- Power up
- Power off
Time Passes...

Power Management

- Computers start consuming less power
- The system gains some power control
- APM enters the scene
- Machines can suspend and resume via APM
The Winds of Change

ACPI

The Machine Gets To Be In Charge

In theory:

- Knob fiddling
- Better control
- More features
The Winds of Change

Implications

Reality Check

- Extremely complex
- Specifications that nobody respects
- Every vendor has its own quirks
- The machine has to do everything
ACPI

- New power management approach
- Affects device drivers as well
- Hard to get right
- Fit into the APM logic
- Lots of system changes
- New MI suspend/resume framework
Structure

Kernel Device Tracking

- Tree hierarchy
- Everything starts at mainbus(4)
- Device drivers attach to the proper parent device
Dependency view

A memory stick is attached to the system

- sd(4)
- scsibus(4)
- umass(4)
- uhub(4)
- usb(4)
- ehci(4)
- pci(4)
- mainbus(4)

The stick becomes available to the user as sd0.
Configuration

Specific functionality

- Match – proper device driver matching
- Attach – attach to a proper place in the device tree
- Activate – activate the device
- Deactivate – turn off the device
- Detach – remove it from the device tree
Suspend and Resume

Low Power States Implications

ACPI support required:
- New system states
- Driver awareness
- Device notification of state changes

Result: The need for new activate actions in autoconf(9)
New Actions

DVACT QUIESCE
Prepare to suspend (discussed later on).

DVACT SUSPEND
Set the device drivers in a suspend state.

DVACT RESUME
Resume the device drivers back to running state.
Expanding autoconf(9)

Code Changes

```c
config_suspend()
- Similar with attach/detach activate/deactivate
- Signals the drivers

config_activate_children()
- Handle the new cases
- config_suspend() the device’s children
```
What is Quiesce?

Definition
The action of pausing or modifying a given process so that data consistency can be achieved.
Why is it important?

Because...

Some devices need pre-suspend notifications to:

- Finish-up disk I/O
- Dump audio buffers
- VT switch out of X
- Wait on other actions to finish
- Do misc. operations requiring a ’normal’ running state
Design

Starting Point

APM Machines

- APM userland daemon
- Userland notifies the kernel
- Kernel APM MD state machines
- Lots of MD code, specially for devices
Integrating Other PM Implementations

Rules

- Keep the same APM mechanism.
- Mold other implementations into it.
- Make it opaque to the userland.
- Let the drivers do the work for them.
- Implementation specific bits in MD
 Mostly whacky assembly routines
ACPI Implementation

Reiterating...

- ACPI will be fit in the same model
- Create a fake apm-like kernel ACPI state-machine
- Keep the same code-paths all the way down
- No difference from a userland perspective
- Only the kernel can tell APM and ACPI apart
Improvements

More MI, Less MD
- The BIOS does most of the work
- Remove MD device related code
- Let the device drivers do it in their activate functions
- Bare MD APM state machine
On Suspend

Code Flow

- `wsdisplay_suspend()`
- `bufq_quiesce()`
- `config_suspend(DVACT_QUIESCE)`
- `splhigh()`
- `disableintr()`
- `config_suspend(DVACT_SUSPEND)`
- `sys_platform->suspend()`
On Resume

Code Flow

- `sys_platform->resume()`
- `config_suspend(DVACT_RESUME)`
- `enableintr()`
- `splx()`
- `bufq_restart()`
- `wsdisplay_resume()`
ACPI

Implementations

- Microsoft Windows
- Intel ACPICA
- OpenBSD
ACPI

How It Works

System Perspective

- ACPI is a proxy between the BIOS and the OS
- Access AML methods according to the ACPI spec.
- Lots of spec violations
- Lots of quirks and workarounds
- The drivers have to handle device state
ACPI

APM-like

Flow

- The userland needs no change
- `acpiioctl()` – notification ioctl
- Same commands as APM
- ACPI tasks (e.g. `acpi_sleep_task()`)
ACPI

On Suspend

Flow

- `acpi_sleep_task(S3)` – checks state changes
- `acpi_sleep_mode(S3)` – handles state changes
- `acpi_prepare_sleep_state(S3)` – AML nightmare
- `acpi_sleep_machdep(S3)` – MD code
- `acpi_enter_sleep_state(S3)` – PM regs fiddling
AML Methods

- **TTS** – transition to state, before device notification
- **PTS** – prepare to sleep, after device notification
- **SST** – system status indicator
- **GTS** – firmware execution before S3
- **PM** – power management registers
- **GTE** – wake registers
On Resume

Completely different from APM

- Real-mode: ACPI trampoline
- Real-mode: Might reenable video
- Real-mode: Enable paging
- Real-mode: Restore CPU registers
- Jump to where ACPI code stopped during suspend
- Clear PM registers
- Transition to S0 (more AML methods)
- Reset the lamp
- Enable runtime GPEs
- Resume the device drivers
Overview

Devices

Problems

- The order in which we suspend/resume them
- The device registers
- The memory maps
- How much state do we need to keep?
Overview

ACPI

No Man’s Land

- The specifications are just a guide in reality
- AML is Windows-targeted
- AML is autogenerated code
- Magic methods that poke into CMOS and whatnot
- The AML parser is always finding quirks in production code
Reposting

Can be done by:

- Real-mode BIOS call
- x86emu
- The driver itself
- Need for an PCI ID table
- nVidia is not supported at all
- Even then, some cards don’t work
USB

Problems

- Most machines have no problems (luck?)
- Some machines get their USB ports reset on resume
- Some don’t get them at all
- Keep USB state vs whack the whole stack
Miscellaneous

- Mount points for USB drives don’t get restored
- Audio sometimes gets trashed
- Aucat doesn’t handle suspend/resume
- X doesn’t come back on some machines
- X gets some image noise, fixed by VT switching
- Taking the CPU to 1-CPU is done at the wrong place
- Some drivers are not supported yet
Don’t Panic

It Works!
- Most laptops are supported
- Most workstations as well
- The sub-system is stable
- The design is good
- Loongson is the newest user
- Lots of non suspend/resume bugs in drivers got fixed as a result
So Long, and Thanks for All the Fish

Questions?