X.Org & BSD - Changes ahead

Matthieu Herrb

OpenBSD/X.Org

FOSDEM February 24, 2008
Agenda

1. Introduction
2. Some history...
3. The present
4. The future
5. Conclusion
Agenda

1. Introduction
2. Some history...
3. The present
4. The future
5. Conclusion
Introduction

- X is the underlying technology for all the Linux BSD on the desktop stuff.
- Often mis-understood by users (normal) and developers (less normal).

Goals of this talk:

- provide some information to *BSD developers on directions of the X window system
- attract some developers to X
Agenda

1. Introduction
2. Some history...
3. The present
4. The future
5. Conclusion
late 80’s - X11R5

- Mostly monochrome or 8 bit colour (indexed) frame-buffers
- Simple non-anti-aliased drawings
- Server side non-anti-aliased text rendering
- Athena widgets and Motif toolkits
- First steps at porting to the i386/PC architecture (X386, XFree86 2.1)

But relatively small and efficient for the epoch
90’s - X11R6

- Initial X11R6 release done by the X Consortium.
- No radical change in hw or core rendering model
- Lots of extensions and ´peripheral˙ functionalities (Xprint, LBX, PEX, XIE, XKB, Xinput,..)

XFree86 contributions :
- Modular X server architecture
- XAA: 2D hw acceleration
- DRI: 3D hw acceleration based on Mesa3D (OpenGL)

During this period, lots of code growth (and bloat) but few benefits for the end-users (focus on new hardware support).
Early 2000 - Xrender

- Porter & Duff compositing inside a window
- fb + render code
- Font rendering in the client, with anti-aliasing
- KAA (EXA) new 2D hw acceleration framework
- Cairo new 2D drawing library
A political interlude

- Some developers unhappy with the XFree86 development model
- Put together the new X.Org foundation to resume X development
- XFree86 decides to change its license in a way that made it irrelevant in a couple of weeks...
- 1st visible change of the new X.Org foundation: change the build system to modular (autotools based).
Mid 2000’s - Compositing desktop: Xgl & Compiz

- New desktop model: windows are rendered off-screen first and then composited together on the desktop.
- Using 3D transforms between off-screen and the desktop, and hw-accelerated compositing based on OpenGL.
- Evolutions: AIGLX, removing the need for Xgl, better Xvideo support,...
- XCB: new C bindings for the X11 protocol, based on an XML specification.
1. Introduction
2. Some history...
3. The present
4. The future
5. Conclusion
X architecture - direct rendering
X architecture - indirect rendering
New features in X.Org 7.3

- **XRandr 1.2**: dynamic management of screens
- New **pixman** library, to share many of the pixel-level compositing code between X serve and other libs (Cairo) that need them.
- New intel driver, independent of the BIOS for mode-setting. Implements XRandr 1.2.
- Input hot-plug support and code clean-ups (breaks some existing drivers)
- Composite enabled by default
- XKB code cleanups
- Support for DTrace on Solaris
- Improvements in drivers and EXA code
- More auto-configuration capabilities
Coming next: X.Org 7.4

- New pciaccess library for PCI bus access
- XACE replaces X Security extension
- Generalisation of XRandr 1.2 in drivers
- Radeonhd driver (based on newly available docs from AMD/ATI)
OpenBSD Status

- OpenBSD 4.2 (released Nov. 1) includes X.Org 7.2
- OpenBSD 4.3 (to be released on May 1) will include X.ORg 7.3.
- Work has started on porting DRI, based on NetBSD’s port.
 - still very alpha, not enabled by default
 - will crash your machine !
- libpciaccess is being ported,
- We should be able to include X.Org 7.5 in OpenBSD 4.4.
Work in progress

- X server internal API cleanups
- XRandR 1.3: support for several separate cards
- TTM - new memory management code in DRM, uses more Gart features, enables the kernel instead of the userland X server to manage video memory.
- DRI 2 + Gallium: new architecture for Mesa3D drivers. Closer to the hardware.
- MPX - multi-pointer X
- Input transforms for composite
- In-kernel mode-settings
X architecture - DRI2

- Toolkits & Applications
 - libGL
 - Mesa driver
 - libX11
- X server
 - X driver
- drm/ttm
- console driver
- kernel
- graphics hardware
Gallium

- make drm simpler / closer to modern 3D HW
- hw independant state trackers takes care of OpenGL
Multi Pointer X

- Virtual pointers - cursors
 - attached to zero or more physical devices
 - provide the events to the applications

- Virtual keyboards - focus
 - attached to zero or more physical devices
 - provides the events to the applications
*BSD TODO

- Input hot-plug HAL/DBus ?
- Porting more DRMs (nouveau, ...)
- TTM
- Framework for in-kernel mode settings
- Promote the MIT/BSD license
NetBSD/OpenBSD Legacy architectures

Problems:
- 8 bits or less displays
- slow CPUs and limited RAM
- gcc 2.95/a.out/no shared libs (OpenBSD)

X.Org evolution is slowly but firmly stopping to support those arches. (Modern embedded systems have 16bit or better)

Solutions:
- port kdrive to the BSD console drivers (partly done - to be debugged)
 - but kdrive needs gcc3 or better
- a new simple X server with only semi-legacy technologies (no Composite, no OpenGL, no fancy Xinput)?
Some news from X.Org foundation

Current Board of Directors:

| Eric Anholt | Egbert Eich | Matthieu Herrb | Adam Jackson |
| Bart Massey | Keith Packard | Daniel Stone | Carl Worth |

On going work:

- XDC - Google campus, Mountain View Ca, april 2008
- XDS - UK or Ireland september 2008
- New foundation membership agreement - boost membership
- New PR committee - better communication
Agenda

1. Introduction
2. Some history...
3. The present
4. The future
5. Conclusion
Conclusion

- X development is going well
- Again exploring the leading edges of user interfaces
- Challenge for *BSD to participate and not only follow

Some open issues:

- Colour management
- Hardware documentation for Open-Source drivers (nVidia,...)
Questions ?