
Advances in OpenBSD packages

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr>

September 22, 2018

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> HTTPS is a lie

HTTPS is a lie

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr>

September 22, 2018

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> HTTPS is a lie

Introduction

This talk is actually a two-parter
Security of https in pkg_add (joint LSE / OpenBSD work)
Security/convenience of building packages (PORTS_PRIVSEP)

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

pkg tools mechanics

Introduction
pkg_add is used to install and update packages.
currently grabs packages through an external ftp command.
ftp handles ftp, http, https.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

The problem

More precisely
each transfer is a new ftp process
https is slower than http by about 30%.
no resumption, because we have no state
libtls did provide session resumption, but no serialization

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Crypto 101

HTTPS
TLS, like most crypto frameworks, uses asymetric crypto for authentification
That’s expensive.
Session resumption shunts that by starting with a shared secret
With session resumption, you get one less packet on a connection start.
And it’s even more useful for slow boxes.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

How to do it

Strategy
libtls must have serialisation for session info
ftp must support this as an option
pkg_add has to pass the option (and create the file)
pkg_add must connect to the same server each time

Same server ?
We now use cdn mirrors, (mostly thanks to Job Snyder) so the first connection starts
with a redirect.
Solution: pkg_add parses redirection messages, so that all connections within a run end
up on the same box.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

the tls part
Not my work, mostly Joel Sing, Bob Beck, Ted Unangt, Theo de Raadt
Ended up working with a temporary file: ftp -S session=/dev/fd/n.

the pkg_add part

Ended up retooling temporary file creation so I could get pure fd (and unlink the file)
pass the fd to ftp.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Didn’t work at first

No such file
Turns out perl does something really smart, see $SYSTEM_FD_MAX. Everything
above it is marked close-on-exec.
That’s actually what we want.
Just turn it off manually WHEN we want the fd.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

The code

sub setup_session
{

my $self = shift;
$self->{count} = 0;
local ($>, $));
my ($uid, $gid, $user) = $self->fetch_id;
if (defined $uid) {

$> = $uid;
$) = "$gid $gid";

}
my ($fh, undef) = OpenBSD::Temp::fh_file("session",

sub { unlink(shift); });
if (!defined $fh) {

$self->{state}->fatal("Can’t write session into tmp directory");
}
$self->{fh} = $fh; # XXX store the full fh and not the fileno

}
sub ftp_cmd
{

my $self = shift;
return $self->SUPER::ftp_cmd." -S session=/dev/fd/".fileno($self->{fh});

}
sub drop_privileges_and_setup_env
{

my $self = shift;
$self->SUPER::drop_privileges_and_setup_env;
reset the CLOEXEC flag on that one
fcntl($self->{fh}, F_SETFD, 0);

}

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Results

Most mirrors support session resumption.
A few do weird things, the Brazilian mirror for instance
Some (ftp.fr) had to get session resumption
Some don’t really support session resumption, mirror.vdms.io for instance.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

ssllabs

Note that you can debug this with https://www.ssllabs.com/

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

session tickets ?

RFC 5077
server won’t/can’t cache session information
so it sends it to the client
signed/encrypted by the server for validity
on resumption, client sends the ticket
server decodes it and says okay

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Bad speed-up

Still slow
HTTPS with session resumption is faster than without
but still way slower than http.
Went from 30% slower to 25% slower.

It’s all about the PentiumˆWRTT
TCP handshake: 3 packets
TLS handshake: an extra 4 packets
(with session resumption: 6 packets)

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Less RTT

At the TCP level
There’s an extension that allows sessions to start quickly
Needs some kind of cookie to prevent some DOSing.

At the TLS level
People are working on TLS 1.3
(yeah, I know it was approved. Let’s wait for a few CVE first, then we can use it)
The handshakes are coalesced, less packets
There’s an experimental mode called 0-RTT resumption
(Send encrypted info directly along with the ticket)

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Why HTTPS - crypto 101 still

Security considerations
integrity: we have it through signatures
authentication: likewise
confidentiality: do we care

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

About signatures

Paranoid signatures

Every package is signed externally (in the gzip header)
<gzip header>
Untrusted comment: verify with openbsd-63-pkg.pub
RWT58k1AWz/zZG4PGHFXsGGANXma1ETfAIX26os0A2RD6A6Bs38CWFzpE16jOO+VsZRCsUGGP85WVXUfhfcti6AZVNAiiyOzOQc=
date=2018-03-11T14:53:47Z
key=/etc/signify/openbsd-63-pkg.sec
algorithm=SHA512/256
blocksize=65536

b0896fec0204c2f9291410c032e503ac6da41c9be49537c0688190fd781c292d
2427dd3653ed775f372dd71a882edf14e88d36bc547bb1590de1e75e806e2c5e
aaab821c30bc49cab2aa8e00283c2d83c256476a5ea7d9d0bca2189f11e578f4
2bcb382177ff53383d660511bfc21add474f33868b9a8607775be0b011447311
2b066b4c73de1e2bc17d2b6c36a53c26e4b9529cbbf0e62c25ec26fc847288cf
ba3fa754009fe9184a94975d6d7b937fc0cd0e70f77817add2dbc5f310473b64
4d71debbf9107c72e573816c671b14914c4ed40963b8509d954e5a9c7ad84fb4
83b7ebf1d0b3bab34c03eeec925f61f1bc6f90ca65d9b50684bc69451bc8938b
fc182b6f1bbf5f2b1ef3624103f712dbcb72cbdd37c0482c9d918a170672c14e
37c8c986f4e6761f528b7705984f947f2d15d048ac7a21f723fc01aa985d652e
aaa580a9fd1c6931eae3a9572ac3fb234e92fdaba42b2fb2d25b9f779d244b43
517a7236e5d5b424fd34445b644b5e03f710c233a721eca7f8c0f66aff4a6c67
<actual gzip contents>

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Out-of-date mirrors

controls
pkg_add displays the ts of the quirks (exception) package
(get quirks thru https explicitly)
(add expiration timestamps for quirks so that pkg_add complains)
the quirks package contains a cve list of packages that MUST be updated.
people don’t remember that list

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

My other persona

Epita LSE
In my lab, I work with people on automatic data analysis

malware classification
network traffic analysis

So using sophisticated stats techniques to recognize stuff
(they call it Machine Learning these days, but it’s just large stats cooking... mostly)

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Confidentiality

https is a lie

Encryption does not change packet size
So I can decode actual GET url lengths
And pkg_add has a predictable order: get stuff in alphabetic order, minus
dependencies.
the only saving grace is the signify block size.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Hacking things

do a few pkg_add ourselves to see the workflow
always gets the list, then quirks
then packages in alphabetical order, with dependencies inserted
... so you retrieve package names lengths
... and match it with the mirrors
... just need a bit of exploration, but it is 100% accurate.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Confidentiality 2

https is a lie
I can get around url GET lengths
X-OpenBSD-Padding: A.....A (normal distribution)
harder to work around package sizes

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Road map

Using http 1.1 (persistent connection) with byte-ranges is the way to go.

but
this only solves the connection packets
byte-range are helped by signatures (we only need 64K blocks)
encryption still doesn’t protect lengths
we would need to enqueue several requests so that the size is unpredictable

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

More details

There are two modes
initial installation
update

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

On initial installation

we still need byte-ranges (dependencies)
so more or less grab 64K
... then the rest
we’ve got the sizes from the list
stutter a bit, pad stuff with redundant 64K

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Details

so the sizes are all 64K
... but for the last one, we get it as two requests
... so randomly do other requests in two parts

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Details 2

Signatures have a header
... that header is longer for larger packages
... so we need to fuzz the sizes as well
... basically random sizes 8K-16K
... so we don’t even have to grab the last one twice
... this will work for updates as well

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Brittle

Relies on two requests being queued and satisfied as one stream

Better approach
randomly split each package in packets of reasonable size
make sure the last packet is large enough
(smallest package is 550 bytes)
so basically, you pre-compute a split of the package in packets around 8K long
(that can occasionally go down to 500 bytes and up to 16K).
you make darn sure the last packet is big enough. If it’s not, you enlarge other
packets randomly
... I haven’t looked at timing yet, but this should be darn unpredictable

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Not deployed yet

Details details...
somewhat complicated (though less than the first version)
will reuse the "distant" protocol that we use for scp
needs to handle timeouts manually, because HTTP 1.1 tends to drop you for no
reason

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Ports privsep

dpb state

dpb is fully privilege separated, several identities
starts as root
fetches as _pfetch
builds as _pbuild
ports tree belongs to user

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

The problem is when you try to play with it manually (as always with privsep). You end
up doing everything as root, because it’s a nightmare otherwise.

Introducing PORTS_PRIVSEP

The idea is to use doas to change identity on the fly.
and add calls to bsd.port.mk

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Why doas

Basically the security model is still that you have to become root to run pkg_add
anyway.
So then you add doas invocations to switch to _pbuild or _pfetch.
Once you moved to _pbuild or _pfetch, you can’t go back, so this gives you
security.
Oh, and _pfetch has network access, but _pbuild doesn’t.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

_PFETCH = ${SUDO} -u ${FETCH_USER}
_PBUILD = ${SUDO} -u ${BUILD_USER}
_MK_READABLE = ${_PBUILD} chmod a+rX
_PMAKE = cd ${.CURDIR} && PKGPATH=${PKGPATH} exec ${_PBUILD} ${MAKE}
_PREDIR = |${_PBUILD} tee >/dev/null
Some operations will need sudo in privsep mode
_PSUDO = ${SUDO}
_UPDATE_PLIST_SETUP=FAKE_TREE_OWNER=${BUILD_USER} \

PORTS_TREE_OWNER=$$(id -un) ${SUDO}
_INSTALL_CACHE_REPO = ${SUDO} install -d -o ${FETCH_USER} -g $$(id -g ${FETCH_USER}) ${PACKAGE_REPOSITORY_MODE}

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

feedback

Basic introduction was surprisingly easy, but there were a lot of details to fix.
Because it can’t be recursive: if you switch to _pbuild, you can no longer use doas.
So you have to be very sure of each operation.
(thanks to Solene, Jeremy, Klemens...)

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

The fine print
Slightly less secure than dpb, because you trust the infrastructure.
Requires doas setup (so setuid binaries) within the ports tree.
Long term solution should be to start as root and drop privs always.
There are just way more places to tweak
And then you run large Makefiles as root...
That’s what base does (apart from the large Makefiles part)

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Base uses su.
We will use chroot -u user / cmd
... because it can be prefixed to a command without needing any more tweaks.
Bonus: a second chroot mode, where the ports tree is NOT chroot’d but anything
running in it is.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

We are trying to limit stuff, basically have doas only run pkg_add and delete.
but doas sucks, because you can’t restrict it to "perl somescript args".
And we have scripts in the ports tree that are run through perl.
because not guaranteed execute bit.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Special treatment for update_plist and update_patches.
They are run as root and switch to user and _pbuild as needed.
Because the whole build tree might not be readable.
Move them to base ?
Paranoia...

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Integration with other tools

People running dpb in a chroot will use proot.
proot sets up everything by default
for manual interaction, you mostly need two scripts/aliases

one to chroot
another one to edit files prior to edit patches.

but with PORTS_PRIVSEP set, you can do everything properly.

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Success! and then

Turns out people like having PORTS_PRIVSEP
Even when not in a proot with dpb
So they started setting things up manually
We will have a fix-permissions target.
Maybe even run automatically if the checks don’t work ?

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

Conclusion

HTTPS: the same deductive approach can be used for any public web site.
Do some web-crawling + predictive model.
I’d be very interested to know how other package systems fare.
For instance, news sites: article length + assets

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr> Advances in OpenBSD packages

