
How OpenBSD’s malloc helps 
the developer

Otto Moerbeek 
EuroBSDCon 2023, Coimbra Portugal



Me?
• Otto Moerbeek, OpenBSD developer since 2003, otto@ 

• DAYJOB=“PowerDNS Senior Developer” 

• Worked on many things, mainly user land 

• Reimplemented malloc, part of OpenBSD since  

•



malloc(3) API
• void* malloc(size_t size); 

• void free(void *ptr); 

• All other functions (realloc(), calloc(), etc) can be expressed in 
terms of the two above 

• A few extra rules, e.g. about alignment 

• Simple API leaves many opportunities to implement it in different 
ways 

• malloc() has to store meta-data, at least for the size of an allocation 



Some implementation choices

• How do we get memory from kernel (sbrk(2), mmap(2), mixed)? 

• Where do we store meta-data (as part of allocated data, or 
separately?) 

• Do we return free memory to kernel using munmap(2) (why would 
you do/not do that?)



Size matters… on OpenBSD
• malloc() always gets memory from kernel using mmap(2). 

• Minimum size of that is 1 page (typically 4k) 

• mmap(2) in OpenBSD is randomised. ASLR is extended to application 
heap. 

• For smaller allocations, malloc() allocates a page and divides it into 
chunks 

• Per chunk page a bitmap is maintained to store which chunks are free. 
This is another piece of meta-data.



Design goals of OpenBSD’s malloc
• Do strict internal consistency checking 

• Implement security relevant features: e.g. randomisation in many 
places. 

• Always store meta-data out-of-band 

• Try to detect API-misuse (e.g. double free) 

• Help the developer to find bugs like out-of-bound-write or use-after 
free



Feature Typical Other OpenBSD

Memory layout Compact Scattered

Return memory to kernel after free() Rare Often

Store meta-data near allocations Yes Never

Internal consistency checks Few Many

Randomisation of cache Some Always, for many cases

Additional optional checks Maybe Quite a few

Continue on error Often Never

Details of errors Sometimes Often

Speed Fast/Ultra Fast Varies

Features and design choices



A program 
with at 
least one 
bug



No crash???? 

Lets try another 
system on next 
slide…..



That’s better!



Explanation

• First system is an amd64 FreeBSD system (Debian using glibc acts 
the same) 

• Second system aarch64 OpenBSD 

• In the FreeBSD case, the allocation is surrounded by mapped 
memory 

• On OpenBSD, the allocation is surrounded by unmapped memory



What happens for smaller allocations

• On OpenBSD, a small allocation is expected to be surrounded by 
other chunks, as they share a page 

• So we expect no immediate crash on a typical out-of-bound write 
for a small allocation, as it will end up in the next one 

• Only segmentation violation if it was the last chunk on a page *and* 
the out-of-bounds write extends beyond the page



On the FreeBSD 
system, we see no 
issue with a 1000 
bytes allocation



• On the 
OpenBSD 
system, also no 
problem. 

• In both cases an 
out-of-bound 
write happens. 

• The memory is 
mapped, it is 
malloc-owned, 
not application 
owned



Adding a malloc flag 
on OpenBSD detects 
the bug



glibc (Debian) has 
flags too, but 
MALLOC_CHECK_ does 
not detect more 
issues, they only print 
different info on error 



Canary check

• Write byte pattern after the application owned allocation if the 
malloc owned allocation is larger that the application owned 

• On free(), check if the canary was overwritten 

• Enabled with malloc option C (included in S)



A double-free case 

On Debian (and 
FreeBSD), the 
chunk is re-used. 

Even withchecking 
by malloc, this will 
not get caught, the 
second call to free 
actually is “fine”.



On OpenBSD, some 
runs catch the error. 

This is randomisation 
in action, plus 
delayed free list. 

With malloc option F 
it is always caught



• Not doing it has big performance impact 

• Immediately doing it has big potential impact: heap usage errors can turn into security 
bugs. OpenBSD uses delayed free list to limit impact: chunks are never immediately re-
used. 

• For page-sized allocations we have a cache for performance reasons, re-use is 
randomised and it is completely disabled with malloc option S  

• Double-free checks are done, but due to randomisation not triggered always 

• Sometimes confusing: errors may be detected for allocation X while freeing allocation Y. 

• More extensive double-free checks are done wit malloc option F (included in S)

Re-using allocations



Leak detection

• Leaks are bad, but not an API usage error 

• As OpenBSD’s malloc stored all meta-data out-of-band, it can use 
meta-data to list leaks 

• Function has been available for a long time 

• Actually using the feature was cumbersome



Original solution

• Not compiled in by default 

• Used file write to dump information if malloc option D was active and 
a file malloc.out existed in the current working dir 

• It was a nuisance having to recompile libc to use it 

• Does not work with pledged programs: often not able to write files



New solution

• Always compiled in 

• Export data using utrace(2) 

• Use ktrace(8) to collect and kdump(2) to display information 

• Some flexibility to record callers



• Run with malloc 
option D 

• Use ktrace to 
collect utrace 
records 

• Display with 
kdump 



Use addr2line to 
display not-freed 
allocations



How does it work?
• On call to malloc the caller is saved using 
_!builtin_return_address(depth) and 
_!builtin_extract_return_addr(p); 

• Sadly the docs say: 
“On some machines it may be impossible to determine the return address 
of any function other than the current one; in such cases, or when the top 
of the stack has been reached, this function returns an unspecified value.” 

• Runtime cost is very low: just an extra pointer stored per large allocation, 
or one pointer per page used for chunks



Continued…

• After the program finishes, an atexit() handler walks the meta data 

• It will aggregate all non-freed allocations having the same caller. 

• It dumps the information, including an addr2line line with f 
compensated for library/executable offset.



Chunks

• To save memory used for meta-data, not all allocations are recorded 

• Only the ones that end up in slot 0 of a chunk page 

• Run several times to get non-zero f values.



Why not more features?
• Run time overhead even if not actively used 

• Avoid too complex code 

• A middle ground solution: always available, but not *very* fancy 
functionality. For more thorough heap debugging other tools can be 
used 

• Example of tool: valgrind, though it does not work very well on 
OpenBSD (yet) (sad trombone…)



• Debian run 
• Notice it shows only 

one leak, only hints 
at the other 

• Full stack trace 
instead of only caller 

• Full history of 
allocation is 
captured: allocation 
point, point of free 
and out-of-bound 
accesses



Back to OpenBSD: malloc options

• F Freecheck 

• J More junking 

• C Canary checks 

• U Free unmap 

• Most important: S



malloc helps
• Strictness not only useful to avoid security issues 

• Randomisation: each run is different, catching bugs that depend on 
specific memory layout 

• Add to that other checks and malloc flags, OpenBSD’s malloc helps as a 
strict (but fair!) teacher to get your heap usage in order. 

• During development and bug hunting, use malloc option S! 

• Check your program with malloc option D for leaks


