
1/18

Recent Progress in and around LibreSSL

Theo Buehler
tb@openbsd.org

EuroBSDCon – September 17, 2022

mailto:tb@openbsd.org

2/18

About LibreSSL

One of the four major forks of OpenSSL
I 1998: OpenSSL forks from/continues SSLeay

accumulates (more) shoddy code, cruft over next 16 years
after lots of disasters, heartbleed makes people look and act

I Apr 2014: OpenBSD forks LibreSSL
I Jun 2014: Adam Langley (Google) makes BoringSSL public
I Nov 2021: Akamai / Microsoft want QUIC QuicTLS

OpenSSL + patchset to add BoringSSL QUIC API

3/18

LibreSSL Main Features

I libtls: sane and easy-to-use wrapper of the SSL/TLS stack
I clean room implementation of TLSv1.3 stack (2018-2020)

I centerpieces: record layer and handshake state machine
I missing features: PSK (work in progress), ECH (complicated)
I non-goal: early data

I new certificate validator
I documentation (unfortunately there’s only one schwarze@)
I lots of code cleanup
I largely compatible with OpenSSL 1.1 on support intersection
I this improved a lot due to making structs in LibreSSL opaque
I ABI about as stable as OpenSSL 1.1

4/18

On OpenSSL compatibility

I OpenSSL 1.1 API: have what we need, more than we wanted
I No OpenSSL 3 API yet
I > 2000 OpenBSD ports link against libcrypto or libssl
I < 100 of these need patches (< 5%)
I Painful: Qt, PyPy (because of py-cryptography), stunnel
I By far the most requested missing feature is Ed25519 . . .
I . . . followed by things like SHA-512/256, SHA-3, Blake, . . .
I 6 ports link against OpenSSL:

I mail/opensmtpd-filters/dkimsign flavor (Ed25519 signatures)
I mail/postfix (DANE, mostly)
I net/bro aka zeek: needs TLS-PRF API
I lang/node: Ed25519 + a dozen API functions
I net/nagios/nsca-ng: PSK
I security/libretls: by design

5/18

Background: Anatomy of a Certificate

Certificates are a complicated data structure.
ASN.1 from RFC 5280:

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

I sequence: basically a struct
I TBS: To Be Signed
I Contents of struct

1. what is (to be) signed
2. how is it signed
3. signature

6/18

Background: Anatomy of a Certificate (continued)

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3
}

Could go on forever.
RFC 5280: 151 pages
> 80 of which are the details of this struct (and CRLs)

7/18

A PEM encoded certificate

Most of you will have seen something like this

-----BEGIN CERTIFICATE-----
MIIG4jCCBcqgAwIBAgISBJxsswkXmlb9UVavEeONm1EzMA0GCSqGSIb3DQEBCwUA
MDIxCzAJBgNVBAYTAlVTMRYwFAYDVQQKEw1MZXQncyBFbmNyeXB0MQswCQYDVQQD
EwJSMzAeFw0yMjA3MjExNTQ3MTJaFw0yMjEwMTkxNTQ3MTFaMBoxGDAWBgNVBAMT
...
-----END CERTIFICATE-----

I PEM: Privacy Enhanced Mail (see RFC 7468)
I Base64 encoded DER of certificate
I DER: Distinguished Encoding (Rules) of ASN.1 “struct”

8/18

Aside: Why do certs start with MII?
All 133 CA certs in OpenBSD’s root bundle start with MII

$ grep -c -- -----BEGIN /etc/ssl/cert.pem
133
$ grep -A1 -- -----BEGIN /etc/ssl/cert.pem | grep -c MII
133

$ echo -n MIIG | b64decode -r | hexdump -Cv | head -n 1
00000000 30 82 06 |0..|

I 30: DER: encoding of an ASN.1 SEQUENCE
I 82: DER: the length is described by the next two bytes
I MII: Base64 of 30 82 + 2 most significant bits of length
I length of a cert is > 127 bytes (so needs at least two bytes)
I length of a cert is usually < 16684 bytes,

so the two most significant bits are 0

9/18

New Certificate Validator

I “Legacy validator” inherited from OpenSSL: unmaintainable
I During lockdown, beck@ wrote an RFC 5280 validator
I Initial code was correct. We only found minor bugs, . . .
I . . . then many months of whack-a-mole started
I Lots of software relies on

I strange and overly specific error codes in certain situations
I undocumented behavior of the verify callback
I specific order of traversing the potential chains

I Took us two years to be reasonably compatible with the
legacy validator
I fix one thing, break ten others
I one hole introduced in the process

10/18

Legacy Record Layer Rewrite (WIP)

I jsing@ wrote a very nice record layer underlying TLSv1.3
I Similar ideas can be used for old TLS versions and DTLS
I Goal: remove ssl pkt.c and d1 pkt.c (terrible code)
I Uses CBS and CBB instead of explicit pointer manipulations
I With this work, DTLSv1.2 support came pretty much for free

I landry@: linphone, baresip
I kn@: tdesktop
I missing bit: BIO ADDR API, so Qt cannot yet use it

11/18

QUIC API

I De facto standard API by David Benjamin of BoringSSL
I OpenSSL PR 8797 (2019): port by Todd Short (Akamai)
I Had to wait for OpenSSL 3 (was already late at that point)
I May 2021: QUIC standardized in RFCs 9000 – 9002
I Sep 2021: OpenSSL 3 released
I Oct 2021: OpenSSL want their own stack

I BoringSSL compatibility explicit non-goal
I Unclear why. Someone must have a reason. . .
I QUIC transport protocol not really within OpenSSL’s expertise

I Nov 2021: QuicTLS announced in IETF side meeting

12/18

QUIC API (continued)

I beck@ and jsing@ ported BoringSSL API
I Plugged very nicely into jsing@’s record layer
I Needed EVP chacha20 poly1305 support in libcrypto
I Experimental version will be available in LibreSSL 3.6

I curl can speak QUIC using ngtcp2
I wlallemand added minimal working version to haproxy

Needs SSL CTX set client hello cb for full support
I BoringSSL API works, but is not great

I exposes full structs and enums publically (sigh. . .)
I BoringSSL and QuicTLS have already diverged
I ngtcp2 initializes public struct without C99 initializers
I BoringSSL open to improvements
I QuicTLS probably set in stone

13/18

Primality Testing

Starting point: a 2018 preprint:
Prime and Prejudice: Primality Testing Under Adversarial
Conditions.
Albrecht, Massimo, Paterson, Somorovsky:
I [. . .] construct 2048-bit composites that are declared prime

with probability 1/16
I [. . .] the advertised performance [LibreSSL/OpenSSL] is 2−80

I [. . .] for a number of libraries (Cryptlib, LibTomCrypt,
JavaScript Big Number, WolfSSL), we can construct
composites that always pass the supplied primality tests

14/18

Primality Testing (continued)

Tricky to fix
I Workaround: crank number of Miller-Rabin rounds (slow)
I Recommendation: Baillie–Pomerance–Selfridge–Wagstaff

algorithm
I Problem: this isn’t easy – someone needs time and skills

15/18

Primality Testing (continued)

Lucky coincidence: Martin Grenouilloux has time and skills
I background: espie@ finds preprint independently
I tells us he has a promising student with a knack for maths
I Martin already had a Python implementation
I a few weeks later: C implementation lands in my inbox
I work stalled for a few weeks due to exams
I things become easier with a mostly correct implementation. . .
I clean up, optimize, simplify, fix, and commit
I result is one of the nicest pieces of code in libcrypto
I amazing work by Martin Grenouilloux

16/18

RFC 3779 support

I This is about routing and BGP
I X.509 Extensions for IP Addresses and AS Identifiers
I Issuer of certificate transfers “internet numbers” to subject
I Part of libcrypto, ported by job@ from OpenSSL
I Helps rpki-client, makes openssl x509 output nicer
I Needed audit, cleanup, lots of fixes, regress
I Public API is pretty broken
I Downside: code is inefficient, hit by certificate validator
I rpki-client: spends ∼ 10% of runtime in RFC 3779 code

17/18

Testing, CI and Coverity

I Ilya Shipitsin from haproxy has been tremendously helpful
I Helped add ASAN CI, which has been invaluable
I Also helps with triaging Coverity issues

I tlsfuzzer runs as part of daily regression tests
I Tickles many corner cases
I Helped improve standards compliance a lot
I Hannes Mehnert mentioned it at BSDCan 2019, thanks!

I The Ruby OpenSSL Gem has a very useful test suite
I Joshua Sing rewrote and improved many of the old tests

18/18

Thanks

I LibreSSL core team: bcook@, beck@, inoguchi@, jsing@
I schwarze@ for awesome documentation and many bug fixes
I ajacoutot@, sthen@ for help with ports
I genua for testing infrastructure and for sponsoring work
I Martin Grenouilloux, espie@ for the work on primality testing
I Ilya Shipitsin for help with portable
I “orbea” for helping with upstream patches
I OpenBSD foundation for sponsoring bulk build machine

