
Making make parallel - legacy code nightmare

Marc Espie <espie@openbsd.org>

September 27, 2014

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Make is simple... or is it ?

.SUFFIXES: .c .o

.c.o:
cc -c $*.c

a.o: a.h
.SUFFIXES: # disable all suffixes
b.o: b.h
.SUFFIXES: .c .o # later
c.o: c.h

...

The #later line reactivates the .c.o rule, it never really went away.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Make is simple... or is it ?

.SUFFIXES: .c .o

.c.o:
cc -c $*.c

a.o: a.h
.SUFFIXES: # disable all suffixes
b.o: b.h
.SUFFIXES: .c .o # later
c.o: c.h

...The #later line reactivates the .c.o rule, it never really went away.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Hindsight makes perfect

This is work I began 10 years ago
In retrospect, some things are obvious

So I would like to share the journey of discovery.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Why did I do that

Not my code
make is not even Unix code
Comes from a distributed OS called "sprite"
Epitome of student project gone wrong
It was not production code.

Impossible to avoid
Legacy makefiles all over the system
Ports system heavily uses peculiarities
Mission critical, as much a part of Unix as bash sh.
Initial goal: make things faster

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Why did I do that

Undocumented features
make was badly specified
realize that even .PHONY is not standard
parallel completely an extension

We got to have a plan
... actually, I didn’t. I started looking at small changes
In retrospect, my initial goal was to make it faster without changing anything.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Long story short

Success
Amiga port build took seven seconds to start. It went down to 1 second.

...

Cheating
Admittedly, half of it was due to work on the ports tree!

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Long story short

Success
Amiga port build took seven seconds to start. It went down to 1 second.

...

Cheating
Admittedly, half of it was due to work on the ports tree!

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

String leadership

make handles a lot of strings, but actually it doesn’t.

cd ${WRKSRC} && \
${ALL_FAKE_FLAGS} ${RUBY} install.rb --destdir=${WRKINST}

handle string intervals
hashing tables
memory buffers

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

How bad was the code

Make features "character buffer handling" functions: growable string buffers that
you can add to.
Those buffers were doubly terminated.
I killed the second zero.
Code crashed.
Fixed the bug.
Code crashes again.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

open hashing

Designed to be fast and "all purposes". There are seven distinct hashing tables in
make:

Variable names
Target names
Known directories
Transformation suffixes
timestamps per-directory
Archive names
Archive members per-archive ...

Make that 8, target equivalence

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

open hashing

Designed to be fast and "all purposes". There are seven distinct hashing tables in
make:

Variable names
Target names
Known directories
Transformation suffixes
timestamps per-directory
Archive names
Archive members per-archive ...
Make that 8, target equivalence

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Went on to be used

in m4
in tsort
in mandoc
in signify

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Quickie look

RTFM

ohash_init(&t, sz, info);

hv = ohash_interval(start, &end);
slot = ohash_lookup_interval(&t, start, &end, hv);

ohash_find(&t, slot);
ohash_remove(&t, slot);
ohash_insert(&t, slot);

Advantages
direct access to the hv hash value means we can do switches on constants
used for magic variables, for instance

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

LISP everywhere

Ouch

GNode *
Targ_NewGN(char *name)
{

gn = emalloc(sizeof GNode);
gn->name = strdup(name);
...
gn->children = Lst_Init(FALSE);
...
Lst_AtEnd(allGNs, (ClientData)gn);

}

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

C++ to the rescue

Notion of Ctor distinct from memory allocation

Better

GNode *Targ_NewGNi(const char *name, const char *ename)
{

gn = ohash_create_entry(&gnode_info, name, &ename);
...
Lst_Init(&gn->children);
...

}

(later)
ohash_insert(&targets, slot, gn);

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Ways less fragmentation

Divided number of memory allocations by

> 10

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Taming the monster

Make is full of small modules that call each other
None of them sane
The only way to make progress is through small changes
Until you understand one module
And can go on the rest

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

A simple list

Vars - handles vars and substitution
Targets - handles targets and the file system
Parser - builds structure from makefile
Cond - every dot bsd command
Suff - suffixes handling
Compat - old sequential engine
Job - funky parallel engine
Dir - directory caching
Buf - string construction
Arch - ar(1) handling

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

"Easy" steps

Apparently, each module is "seperated". But there are interactions built over the years.

Baby dragons
Buffer handling
Variable contents

But there might be (smallish) dragons...

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

50 shades of make variables

variables in the Makefile
variables on the command line
environment
dynamic variables

Initially, four lists.
Now, just one global list, and one per-node
Plus lazyness, expanded as late as possible.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Tricky ? you bet

Still found a bug this year, related to variable expansion
Nice benefits, such as "recursive variables". (we could already do that through loops)
Also, pass command line recursively through .MAKEFLAGS.
Borrow netbsd extended .for loops (awesome idea)

. for lnk file in ${MLINKS}
@l=${DESTDIR}${MANDIR}${lnk:E}${sub}${lnk}; \
t=${DESTDIR}${MANDIR}${file:E}${sub}${file}; \
echo $$t -\> $$l; \
rm -f $$t; ln $$l $$t;

. endfor

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Useful extensions and the rest

BSDmake has two basic kind of useful extensions
variable modifiers, e.g., ${VAR:L}
dot keywords, .for, .if ...

Tricky part is evaluation of variables in dot stuff ! Diverged from other BSDs in variable
modifiers.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

... the rest

Parallel make wasn’t working.
Specifically, one shell to run all commands (experimental)
More output
#ifdef REMOTE execution from sprite

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Hindsight

By that point I knew enough about the basic structure

shell execution: why depart from everybody else
extra display breaks things too
REMOTE is unlikely to come back

So I killed REMOTE entirely, made the extra display debug-only, and removed the
possibility to use other shells.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Parallel v1, output

Model: one target forks a job, job is responsible for spawning its commands.
Output comes out garbled.
Setup a pipe to catch output.
At that point, things good enough for kernel build through make -j.
Needed to add lots of dependencies ...

and boom, make build works too.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Parallel v1, output

Model: one target forks a job, job is responsible for spawning its commands.
Output comes out garbled.
Setup a pipe to catch output.
At that point, things good enough for kernel build through make -j.
Needed to add lots of dependencies ...and boom, make build works too.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Issues

pipe means no stdin
jobs that create several files race, e.g. yacc production

a.c a.h: a.y
yacc a.y

Hack manual synchronization through a timestamp

a.c a.h: stamp

stamp: a.y
yacc a.y
touch $@

make doesn’t understand the file system: ./a and a are different things.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Taking control

Writing documentation.
Reading again POSIX specifications.
Changing the manpage to conform.
Foregoing the quaint little things.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

POSIXy fuckety fuck

What’s POSIX and what’s not.
We don’t have a POSIX mode and warn.
People write non-portble makefile
make sh... Sounds familiar ?

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Combinatorial explosion

make -j4 on recursive makefile:

4jobs+ 16jobs+ 64jobs+ ... = lots

Other systems use a kind of "token" system, but
finding a socket name can be difficult. Find a file system you can write to.
fd passing is a hack. There’s no guarantee the shell will let you.

So let’s recognize recursive rules in makefiles.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Combinatorial explosion2

make -j4

rulea:
normal

ruleb:
normal

rulec:
cd dir && make # <- hey I’m recursive

when we meet rulec, notice that’s recursive.
Don’t allow any other jobs to start while that one is running.
Replace exponentiation with sum in the worst case.
Because you can expect the cheap jobs to terminate early.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Sounds familiar ?

Yeah, it’s the same as DPB_PARALLEL in dpb land.
Works very well in practice, just needs some kind of heuristic to say "this is a kind of
make".
... Because you can expect the cheap jobs to terminate early.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

The pipe issue

Solution came from totally something else
Better location of error messages
Convergence with dpb
Replace the "job control handler" with a job automaton: One single job-handling loop
Unintended benefit: no need for pipe, as most printing comes from make itself

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Signal handling

Wait can’t be interrupted by signal.
Naive approach doesn’t work:

1 fork jobs
2 wait for any to finish
3 check for signals
4 go back to 1.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Recent signal handling

1 setup empty handler for SIGCHLD and handlers for the rest that just say "got that
signal"

2 fork jobs
3 block all signals
4 check for signals that happened before 3, including SIGCHLD (that’s just wait3(...

WNOHANG))
5 pause suspend until something happens

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Side-notes

sudo
If you test this with sudo it won’t work, because it can’t pass signals through (at least
in the OpenBSD version).
One more reason to not be root while building ports...

expensive
Works with the recursive make optimization... because just one command will need to
be tagged expensive.

Single shell ?
Heuristics to NOT fork a shell for simple commands Could be expanded to also do

cd somedir && run_some_cmd

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Multiple targets

Multiple targets semantics changed.
Comment from netbsd (possibly David Holland ?)

a b: deps
somecommands

is no longer a shorthand for

a: deps
somecommands

b: deps
somecommands

but it ties a and b together, so lock one target while building the other

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Almost

a b: deps
somecommands

if somecommands refer to $@, then it’s actually old-style stuff. Otherwise, we assume it
really builds a and b together.
(Note that we already scan command lines before execution)

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

File system equivalence

This is the worst bug we still have.

make doesn’t know that a and ./a are the same file

It’s worse with VPATH constructs.
It only really matters for parallel make.
Sequential make is myopic: it relies on the file system each step of the way.
This breaks autoconf builds, for instance

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Partial solution

Equivalence
Build a whole structure of ’equivtargets": hash filenames without the directories, and
link all those targets together (as potential siblings), then check through filesystem
semantics and VPATH handling for actual equivalence.

Pitfall
Can’t actually use this all the time, make loops.

Sadly
This doesn’t really work yet and is very nasty.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Next steps

Work in progress.
Remove the difference between the parallel builder and the compat builder by using the
compact builder with the new job engine...
... By filling a queue instead of building stuff right away.
Counter-intuitive, but the parallel engine is still partly broken (not lazy enough) and
incompatible with the sequential builder...

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Beyond skynet

Recursive make is bad
Because each make rescans part of the file system
Because dependencies are not handled
Ways to do that ?

Shhhh! Ninja
Redesign that fixes most of make issues
But 0% compatible.
Not wide adoption yet.

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

Questions !!!

Marc Espie <espie@openbsd.org> Making make parallel - legacy code nightmare

