OpenBSD/sun4v: Porting OpenBSD to Sun's UltraSPARC T1 and T2 processors

Mark Kettenis kettenis@openbsd.org

OpenBSD

October 9, 2011

月▶ ▲ ∃

Outline

Introduction

- 2 History of 64-bit SPARC
- 3 Step 1: OpenBSD on "bare metal"
- 4 Step 2: OpenBSD in a guest domain
- 5 Step 3: OpenBSD in the primary domain
- 6 Future improvements

Introduction

Just like BSD, SPARC is very undead!

- Oracle just unveiled the a new SPARC CPU
- World's Nr. 1 supercomputer is SPARC

Short History of SPARC

- 32-bit SPARC V7/V8 Lots of implementations
- 64-bit SPARC V9
 - Fully specified unpriviliged mode
 - Partly specifies priviliged mode

First implemented by HAL/Fujitsu: SPARC64 Sun followed with UltraSPARC (sun4u)

Priviliged mode differse between SPARC64 and UltraSPARC (MMU)

Attempt to make SPARC64 and UltraSPARC more compatible: SPARC Joint Programming Specification (JPS1).

- Fujitsu SPARC64-V
- Sun UltraSPARC III

Sun UltraSPARC IV: First SPARC multicore

Sun UltraSPARC T1: Chip Multithreading, Hypervisor (sun4v)

OpenBSD on SPARC V9

- OpenBSD/sparc64 runs on
 - ▶ Sun UltraSPARC I, II, III, IV, T1 and T2
 - Fujitsu SPARC64-V, SPARC64-VI and SPARC64-VII

Almost all machines are supported (including laptops and E10000)

- Based on the NetBSD port by Eduardo Horvath
- Porting to OpenBSD started in 2001; mostly done by Jason Wright with help from Arthur Grabowski.
- Officially supported since OpenBSD 3.0
- OpenBSD 4.0 was the first release to run on UltraSPARC III
- OpenBSD 4.4 added support for Fujitsu SPARC64

OpenBSD is the only fully Open Source OS supporting Fujitsu SPARC64!

<u>OpenBSD</u>

SPARC V9 "features"

- RISC
- Register windows
- Software TLB
- Fast traps
- Prioritized interrupts

990

/⊒ ▶ ∢ ∃

Chip Multithreading

- Hyperthreading on steroids
 4 or 8 threads per core instead of just 2
- Modern CPUs spend a lot of time waiting for memory access
- Switch to another thread and continue to do useful work
- Multicore
 - Up to 64 virtual CPUs per chip.
 - Up to 4 chips per machine.
 - Up to 256 virtual CPUs per system (T5440).

Outline

Introduction

- 2 History of 64-bit SPARC
- 3 Step 1: OpenBSD on "bare metal"
- 4 Step 2: OpenBSD in a guest domain
- 5 Step 3: OpenBSD in the primary domain
- 6 Future improvements

Step 1: OpenBSD on "bare metal"

Initial Hypervisor release had no domaining capabilities

< A > < 3

CPU support

- Unpriviliged instruction set 100% compatible with SPARC V9
- Mostly compatible with older UltraSPARC processors
- MMU Translation Table Entries have diffrerent format
- sun4u: different sets (AG, IG, MG) of globals selected by trap type can be switched by modifying %pstate
- sun4v: different sets of globals selected by trap level; can be switched by modifying %gl

Bootloader

- 1st stage bootloader written in Forth; no changes necessary
- 2nd stage bootloader written in C; calls OpenBOOT for all hardware access no changes necessary either
- Kernel needs lots of changes

Goal

Single kernel for sun4u and sun4v

Code patching

```
#define NORMAL_GLOBALS() \
999: wrpr %g0, PSTATE_KERN, %pstate ;\
.section .sun4v_patch, "ax" ;\
.word 999b ;\
wrpr %g0, 0, %g1 ;\
.previous
```

```
struct sun4v_patch {
    u_int32_t addr;
    u_int32_t insn;
}
```

Also used to patch away cache flushes; UltraSPARC T1/2 no longer has virtual cache aliasing

- SPARC V9 trap handling can be deep:
 - Register windows
 - Software TLB
- sun4u: 4 levels of nested trap levels
- sun4v: 4 leves, but 2 reserved for Hyperpriviliged mode
 - Hypervisor helps by doing some of the TLB handling
 - Still some trickery needed: ivert order in which traps are handled
- Seperate trap handlers for sun4u and sun4v

System support

CPU support is not enough

Also need to be able to talk to the system hardware to do I/O.

Device drivers:

vbus(4) virtual device bus vpci(4) virtual PCIe host bridge vrng(4) virtual random number generator vrtc(4) virtual real time clock

PCI host bridge

Several generations of PCI host bridges un sun4u:

Psycho UltraSPARC I/II/IIi; psycho(4)

Schizo UltraSPARC III/IIIi/IV; schizo(4)

Fire UltraSPARC IIIi, PCIe; pyro(4)

Host bridge handles:

- PCI config space access
- PCI interrupt management
- IOMMU management

sun4v Hypervisor provides these services; vpci(4) makes Hypervisor calls instead of direct hardware access

Step 2: OpenBSD in a guest domain

Later Hypervisor added domaining capabilities

Mark Kettenis (OpenBSD)

OpenBSD/sun4v

October 9, 2011 16 / 37

< 4 → <

OpenBSD in a guest domain

Firmware upgrade for T1000/T2000 adds domaining capable Hypervisor Allows creation of multiple domains. Domains get assigned resources for exclusive use:

- Virtual CPUs
- Memory
- Cryptographics resources
- IO devices

Control domain Can configure the Hypervisor; has access to service processor

Service domain Domain that provides virtual devices to other domains

IO domain A domain with direct access to physical devices

Guest domain A domain that uses virtual devices provided by a service domain

OpenBSD in a guest domain: device drivers

Device drivers implemented in this phase:

cbus(4) channel device bus vnet(4) virtual network interface vdsk(4) virtual disk

Boostrapping OpenBSD in a Guest domain

Bootstrapping was done on T1000 server:

- Create control domain and IO domain using Solaris
- Boot diskless kernel (NFS root) using network interface in PCIe slot
- Hack on vnet(4) code; recompile kernel; repeat until it works
- Boot diskless kernel (NFS root) using vnet(4) interface
- Hack on vdsk(4) code; recompile kernel; repeat until it works
- Boot kernel from vdsk(4)

Communication between domains

Logical domain channels (LDC)

- Hypervisor support:
 - send/receive 64-byte message (unreliable)
 - copy memory between domains
 - map another domain's pages
- Standard protocols defined by Sun:
 - LDC Transport Layer: Reliable data streams using 64-byte messages
 - Virtual IO (VIO) protocols:
 - ★ vDisk
 - ★ vNet

Built on top of the LDC Transport Layer

Virtual Network Interfaces

Implements vNet virtual IO protocol

- Memory containing Tx packets needs to be exposed to other domain.
- Can't trust the other domain; don't expose mbufs to it!
- Dedicated memory pool for each interface; copy mbufs into pool before Tx

cbus0 at vbus0 vnet0 at cbus0 chan 0x0: ivec 0x200, 0x201, address 00:14:4f:f8:38:e7

Virtual Disks

Implements client side of vDisk virtual IO protocol

- vdsk(4) emulates SCSI SCSI commands are converted into vDisk commands
- Expose buffers to other domain
 Domain providing storage has to be trusted anyway

cbus0 at vbus0 vdsk0 at cbus0 chan 0x2: ivec 0x204, 0x205 scsibus0 at vdsk0: 2 targets sd0 at scsibus0 targ 0 lun 0: <SUN, Virtual Disk, 1.1> SCSI3 0/direct fixed sd0: 2048MB, 512 bytes/sec, 4194304 sec total vdsk1 at cbus0 chan 0x3: ivec 0x206, 0x207 scsibus1 at vdsk1: 2 targets sd1 at scsibus1 targ 0 lun 0: <SUN, Virtual Disk, 1.1> SCSI3 0/direct fixed sd1: 2048MB, 512 bytes/sec, 4194304 sec total

Use case: pf firewall in the box

For example on a T1000 server:

- Put a decent NIC into the PCI slot
- Configure vNet between domains

Step 3: OpenBSD in the primary domain

Device drivers: vcc(4) virtual console concentrator vcctty(4) virtual console device vsw(4) virtual switch vds(4) virtual disk server vdsp(4) virtual disk server port

Guest domain console access

vcc0 at cbus0 vcctty0 at vcc0 chan 0x19: ivec 0x232, 0x233 domain "svendsen" vcctty1 at vcc0 chan 0x1e: ivec 0x23c, 0x23d domain "alfven" vcctty2 at vcc0 chan 0x11: ivec 0x222, 0x223 domain "stenhammar"

cu -1 ttyV0
Connected

{0} ok

Image: A math a math

Virtual switch

Solaris has a virtual switch device driver

OpenBSD Philosophy

Avoid duplicating code!

bridge(4) already implements a layer 2 switch Reuse by:

- Create a vnet(4) interface for each switch port
- Bridge them together using bridge(4)

Network configuration

vsw0 at cbus0

vnet0 at vsw0 chan 0x12: ivec 0x224, 0x225, address 00:00:00:00:00:00
vnet1 at vsw0 chan 0x1a: ivec 0x234, 0x235, address 00:00:00:00:00:00
vnet2 at vsw0 chan 0xb: ivec 0x216, 0x217, address 00:00:00:00:00:00

```
# ifconfig vnet0 -inet6 up
# ifconfig vnet1 -inet6 up
# ifconfig vnet2 -inet6 up
# ifconfig em1 up
# ifconfig bridge0 add vnet0 add vnet1 add vnet2 add em1 up
```


Image: A math a math

Virtual Disk Server

Implements server side of vDisk virtual IO protocol

- Exports disk images as virtual disks to other domains
- Much like vnd(4)
- All memory is exported by the client to the server No security issues!

Solaris as an OpenBSD guest

cu -l ttyV2
Connected

{0} ok boot
Boot device: disk File and args:
SunOS Release 5.11 Version snv_151a 64-bit
Copyright (c) 1983, 2010, Oracle and/or its affiliates. All rights reserved
Hostname: stenhammar

stenhammar console login: kettenis
Password:
Last login: Sat Jan 8 23:42:41 from nielsen.sibeliu
Oracle Corporation SunOS 5.11 snv_151a November 2010
kettenis@stenhammar:~\$

Image: A math a math

Linux as an OpenBSD guest

- Only mainstream SPARC distro: Debian
- Doesn't seem to support sun4v by default
- Installer boots, but no virtual hardware seems to be detected
- Poor support for installation over serial console

Outline

Introduction

- 2 History of 64-bit SPARC
- 3 Step 1: OpenBSD on "bare metal"
- 4 Step 2: OpenBSD in a guest domain
- 5 Step 3: OpenBSD in the primary domain
- 6 Future improvements

A 🖓

Domain Configuration

Currently only possible using Solaris:

- Reconfigure domains
- Start domains
- Stop domains

Needs to be possible from OpenBSD Status:

- Start/Stop works; needs some cleanup.
- Reconfigure under investigation; lots of code still to be written

Meanwhile: Keep a Solaris disk around!

Hypervisor specification defines protocols to assist manageability: domain-shutdown Request graceful shutdown domain-panic Request panic dr-cpu Dynamic reconfiguration for virtual CPUs OpenBSD needs to implement these protocols... ...but currently doesn't.

Support for Neptune

Neptune is Sun's 10GigE network interface

- On-chip on UltraSPARC T2 (and SPARC T3?)
 - but 10GigE only (need XAUI card + XFP)
 - virtualizable
- Companion chip for UltraSPARC T2+
 - ▶ GigE or 10GigE (with XAUI card + XFP)

dlg@ needs to unslack! Or if somebody could donate a XAUI card + XFP...

Mark Kettenis (OpenBSD)

OpenBSD/sun4v

October 9, 2011 34 / 37

OpenBSD on Oracle SPARC T3? SPARC T3 not radically different from UltraSPARC T2

OpenBSD should run, especially in a guest domain...

...but nobody tried this yet.

No chip-specific hardware documentation available Hypervisor draft available

October 9, 2011 35 / 37

OpenBSD on Oracle SPARC T4?

- SPARC T4 has a new core
- Better single-thread performance
- OpenBSD might run, especially in a guest domain
- No chip-specific hardware documentation available

Acknowledgements

Sun Microsystems for providing the hardware that made this work possible

< (T) > <