Synthetic Memory Protections

An update on ROP mitigations

Theo de Raadt
OpenBSD

Attack methods advance

Smashing the Stack, 1996

Solution: make the stack non-executable, 19997
Payload on heap, 1998

Solution: make the heap non-executable, 2001+7?

Then came ROP. A stack payload contain sequential ret’s to pre-
existing code chunks (called gadgets) already present in code
memory, combining them however it takes to gain control

ASLR and other mechanisms to hide code locations

But info leaks can disclose code locations...
There isn’'t a simple complete solution to block ROP.

Attack methods

Smash
The

Stack

Smash
The
Heap

Code must remain executable so how do we stop ROP?

Return
Oriented
Programming

- point at many
pieces of code

So the solutions for ROP are incomplete

ROP methods have become increasingly sophisticated

But we can identify system behaviours which only ROP code requires

We can contrast this to what Regular Control Flow code needs

And then, find behaviours to block

25 years of stack smashing mitigations

1st generation: non-X stack, WAX, and stack protector

2nd generation: ASLR and other hiding methods

3rd generation: RETGUARD and gadget reduction
(Todd Mortimer RETGUARD Tokyo)

4th generation: Synthetic Permissions

Natural Abilities of the MMU

Remap physical memory into virtual ranges

Generally two virtual ranges:

Kernel

Userland (* focus of talk)
Various approaches, all with same basic idea:
Tree structure, hardware/software walked, cached in a TLB

Entries contain Physical Page address, plus Attribute bits
Attributes bits include Permission bits: R, W, etc

R and W

Older MMU only had 2 Permission bits

Present meaning Valic | rornieoigusians s SN
Write

Valid implies Read

Read implies either program reading memory or instruction fetch
(Instruction fetch is also known as X)

Better MMU had Valid bit, and seperate R and W

Permission set. no mapping, read+execute, read+write+execute.

X or NX

Around 1999, newer cpus added an X permission

physaddr other bits

But some added Not-eXecutable, or NX, instead

Confusing. Due to V = Read, so for software compatibility the inverse

permission added as NX
Operating systems had to support old and new systems..

OpenBSD was first system to use X/NX on all possible platforms with a
policy called WAX (which was a solid step in 2002...)

Introducing new Synthetic Permissions

Immutable mappings
Execute-Only, in hardware where possible, but also:
Opportunistically block Read before Execute
Block System Calls from reading userland memory
Stack Permission on mappings
Syscall Permissions on mappings

Pinning Syscall entry to a unique entry point

Procmap tool shows new permissions

From the OpenBSD manual page

procmap -a
Start End Size O0ffset xSelpc RWX I/W/A ...
08048000-080bOTTf 420k 00000000 r-x---p+ (rwx) 1/0/0 ...

In this format the column labeled “rwxSelpc” comprises:

rwx permissions for the mapping

S mapping is marked stack

e mapping is allowed system call entry points
|

P

C

mapping is immutable (rwx protection may not be changed)

shared/private flag
mapping needs to be copied on write (‘+’) or has already been copied (*-')

Procmap of sed(1)

Sample output (edited) 3t End ize Offset Object

Pe1330a6RB00-0el133B0ab2fff B!!!!!Bﬂ sed rodata
Ae1330a63000-0e1330a68fFf sed text
Ae1330a69000-0e1330a69fFf 4k ﬂﬂﬂﬂ sed relro
Fa(arT]()\/Eecj rT]CJSSt rT]EiII()(:(:g) felilfacafdn-0el33Rabafff 4k sed data
Pe1330abbddd-0el133Babbfff 4k sed bss
Pd()ti(:ea- Ae15376ceddd-0e15376cefff 4k guard
. Ae1547049000-0e154705efFf 28k ld.so.hints file mapping
fel154ad98000-0e]54adcefff 228k Bﬂﬂﬂﬂﬂﬂﬂ libc.s0.97.8 rodata
felsdadcf@dd-0el54ae75FFF 668k AR@3IGO0A - libc.s0.97.8 text
FQEir](j()rT] IEi)/()lJt Ael154aeT7oddB-0e]154aeT7afFf 4k @p@dcoaa libc.50.97.8 relro
i Ael154ae77000-0e]154aeTcfff Zdk f@gddeas libc.s0.97.8 relro
fel5d4aeTdedn-0el54aeTefff gk og@ezo0n libc.s0.97.@8 data
)(\Alrtr]()ljt FQ Bel154ae7fo00-0e]15dae7fiff 4k B!!E4lﬂﬂ libc.s0.97.8 malloc page
Ael154aciP000-0e]54ae8df Ff 56k
Many | (|mmutab|e) Pe154d973000-0e154d975F FF 12k
Ael1578295000-0e1578295Ff T 4k e
Bel15bcd7d@@@-0e15bcd7df T 4k a memory allocation
Some e (Sysca”) Be158087f000-0e]1 58087 FFFF ak unmapped guard page
Ae15d729c@dB-0e15d729cfff 4k - sigtramp page
Ael162f879000-0e162f8TbT T 12k .50 rodata

Unmapped guards Pe162f87c000-0e162F87dFFF 8k .so boot.text destroyed

Bel62f87edDR-0e162fBBOFFT 48k .50 text

Bel162f979000-0e162f979fff 4k E!IIHIE!EI .50 relro
S (StaCk) near end fel162f97a000-0e162f37afff 4k 00012009 .s0 data

Bel62f97baRR-Be162f37bFF T 4k E!IE!IE! .50 bss

Tfiffdeced@@-7f7fffTedfff 25608k stack growth area
Tfifffieed@a-7f7ffffedfff 8192k E!IIIE!E! stack

=& & &

= &=

Immutable mapping

At least 2 attacks have manipulated mmap(2) or mprotect(2) to change a
permission, perform a memory operation, and continued to control/escalation

New system call mimmutable(2) allows locking the permissions of a region

No mprotect(2). No mmap(2) or munmap(2) which might replace the object
Not normally called by programs themselves

Kernel does this in execve(2) for a few regions
|d.so takes care of main program and library mappings where suitable

Only carefully chosen regions are made immutable

Immutable - Implementation

6 months of work
RELRO activation made me pull my hair
TEXTREL binaries required a similar workaround
malloc(3) self-protection interaction
Chrome v8 flags self-protection interaction

Foundation for some other Synthetic Protections:

It becomes possible to cache addresses, because the specific objects
cannot be replaced!

X without R: Execute-Only Permission

Newer processors have MMU or features which can enforce Execute-
Only (we call it Xonly)

We avoided working on this because only a few machines had MMU
support, and it requires toolchain / application repair

I0S Is execute-only; Android tried a few years ago (abandoned)
Time for OpenBSD to do it

We found & fixed the missing steps, transitioned most platforms, and
found a few MMU mechanisms along the way

Xonly: Fix userland

Tools
Compilers — data islands, jump tables, etc
Linkers, correct placement seperation
Applications
Dumb applications that invent their own ABI (very few)
Chrome, Node: V8 — the embedded blob
FFI
OpenSSL libcrypto, and so many copies..
Concurrent development, 10 people, 12 weeks

Xonly: Machine-independent kernel support

execve(2) ELF parser has to become strict

Kernel does some Xonly enforcement, |Id.so and crtO do others
Text-relocation binary support

Some interaction with Immutable Permission

Some uvm / pmap page permissions transitions were not anticipated
and code needed repair

Xonly: X text without MMU support

Many cpu families have members with & without MMU support

A surprising synthetic behaviour!

If cpu has independent R and X fault indicators, we can notice a R
operation (which faults up to vm layer) which happens before a X
operation (which could be in the MMU/TLB)...

So some reads will be blocked

fusr/lib/libc.s0.97.0 d12e8c2c-d13ad9%9a8 (c4d7c, 197 pg) prot X
YYNNNNNNYYYYYYYYYYYYYYYYYYYNNNnyyyyyyynnnnnnnnnnnnnnnnnnnnnnnnnn
nnnnnnnNNyyyyyyynnnnyyyyyynnyynnnynnyyyynnnnyyyyyyyyyyyyynnnnnnn
NNNNNNNYYYYYYNNNNYyyyyynnnnnnyyyyynnnyyyynnnnyyyyynnyyyyyyyyyyyy

Yyyyy
read 104 pages of 197

cannot read the whole

Xonly: Kernel copyin-xonly for code regions

. child
2 types of non-execution reads
1d.so

mmap Xz

mmap X

mmap nrx

mmap nwx

mmap XNwx

main

libc unmapped?
libc mapped
parent

Userland reads userland memory
Kernel reads userland memory
The 2nd one is

write (1, &main, 4);

Inside the kernel, this turns into

1d.so

mmap xz

mmap X

mmap nrx

mmap nwx

mmap Xnwx

main

libc unmapped?
libc mapped

copyin (useraddr, kern-buffer, size);

Blocks reading code areas
Blocks BROP (Hacking Blind)

userland

kernel

unreadable\unreadable\

unreadable
unreadable
unreadable
unreadable
unreadable
readable

unreadable
readable

userland
readable

unreadable
unreadable
unreadable
unreadable
unreadable

unreadable
unreadable
unreadable

kernel

'unreadable |

unreadable unreadable |

readable
readable
readable
readable
readable
readable
readable

readable
readable
readable
readable

unreadable
unreadable
unreadable

Xonly: Kernel copyin-xonly for code regions

Per-process, Kernel maintains a 2-4 entry mini-cache of text (code) sections
marked Xonly

Addr,len ranges can be cached because these regions have Immutable
Permission

Main program text, sigtramp, ld.so text, libc.so text
Mini-cache cannot be expanded by userland process
libc.so range is learned when ld.so calls msyscall(2) for Syscall Permission
Checked before every copyin(9), on machines without MMU support

Checking cost is below the noise floor

Xonly: hardware support

ARM64, RISCV64 have proper RWX bits
HPPA has a strange gateway feature
Sparc64 SUN4U has split | and D TLB, with software loading

Newest MIPS (octeon) have a Read-Inhibit bit (Valid implies R or X,
but RI disables R, much like x86 NX)

The surprise: Newer Intel/AMD cpus can do Xonly

Xonly: amd64 PKU

A fairly new CPU feature: cpuid to detect + register to enable

PTEs contain new 4-bit PK value, indexing into RPKU register which
contains 16 2-bit blocks (WI = write inhibit, Rl = read inhibit)

We leave regular memory as PK=0, with matching RPKU bits WI=0,
RI=0

Xonly pages are marked PK=1, with RPKU bits set to WI=1,RI=1
So, kernel pre-loads RPKU value Oxfffffffc

Xonly: amd64 PKU

But userland can change the RPKU register!

On every kernel entry, if the RPKU register has been changed kill the
process

We get 99.9% effective Xonly

Xonly: other PKU

PKU idea was inherited from IBM mainframes

So powerpc G5 & powerpc64 also have a PKU feature

On these processors userland can be blocked from changing the
register

Stack Protection

New Protection Mechanism:

When a process does a system call, the SP register MUST point
to stack memory!

If it does not, we assume a ROP / ROP Pivot, and kill the process

Kernel execve() sets up the stack + stack grow region, but mmap(2)
gains a MAP_STACK flag

pthread stacks are a bit tricky

sigaltstack(2) is worse, new rule required: stacks must be new all-
zero mapping, so that no underlying data persists

Execute Syscall Protection

New Protection Mechanism:

When a process does a system call, the PC must point inside a
region where system calls are permitted

If this Is violated, process is killed

2 to 4 regions, 2 cases:

Static: main program text section, sigtramp page

Dynamic: Id.so text section, sigtramp page, and ld.so adds libc.so
text using msyscall(2)

Cannot create a PROT_EXEC region to perform system calls

Stack and Syscall Protection - Implementation

Per-process, there are only a few valid regions
For Stack and Syscall, kernel maintains a start, length, and serial
Serial is incremented everytime a relevant mapping is changed

If serial has changed, re-learn from vm system (more expensive operation)

Expected a small performance impact
Worst-case test programs saw tiny performance impact

But real-world application impact was below the noise floor

Stack and Syscall Protection - Justification

ROP attack code is really weird
Bizzare execution restrictions result in bizzare actions

Stack and Syscall Protection detect a variety of easier exploit patterns,
pushing the ROP programmer to explore more challenging schemes, which
may not be viable

Increasing exploitation difficulty is a valid strategy

Procmap of sed(1)

Sample output (ediedt) 3t End ize Offset Object

Pe1330a6RB00-0el133B0ab2fff B!!!!!Bﬂ sed rodata
Ae1330a63000-0e1330a68fFf sed text
Ae1330a69000-0e1330a69fFf 4k ﬂﬂﬂﬂ sed relro
Fa(arT]()\/Eecj rT]CJSSt rT]EiII()(:(:g) felilfacafdn-0el33Rabafff 4k sed data
Pe1330abbddd-0el133Babbfff 4k sed bss
Pd()ti(:ea- Ae15376ceddd-0e15376cefff 4k guard
. Ae1547049000-0e154705efFf 28k ld.so.hints file mapping
fel154ad98000-0e]54adcefff 228k Bﬂﬂﬂﬂﬂﬂﬂ libc.s0.97.8 rodata
felsdadcf@dd-0el54ae75FFF 668k AR@3IGO0A - libc.s0.97.8 text
FQEir](j()rT] IEi)/()lJt Ael154aeT7oddB-0e]154aeT7afFf 4k @p@dcoaa libc.50.97.8 relro
i Ael154ae77000-0e]154aeTcfff Zdk f@gddeas libc.s0.97.8 relro
fel5d4aeTdedn-0el54aeTefff gk og@ezo0n libc.s0.97.@8 data
)(\Alrtr]()ljt FQ Bel154ae7fo00-0e]15dae7fiff 4k B!!E4lﬂﬂ libc.s0.97.8 malloc page
Ael154aciP000-0e]54ae8df Ff 56k
Many | (|mmutab|e) Pe154d973000-0e154d975F FF 12k
Ael1578295000-0e1578295Ff T 4k e
Bel15bcd7d@@@-0e15bcd7df T 4k a memory allocation
Some e (Sysca”) Be158087f000-0e]1 58087 FFFF ak unmapped guard page
Ae15d729c@dB-0e15d729cfff 4k - sigtramp page
Ael162f879000-0e162f8TbT T 12k .50 rodata

Unmapped guards Pe162f87c000-0e162F87dFFF 8k .so boot.text destroyed

Bel62f87edDR-0e162fBBOFFT 48k .50 text

Bel162f979000-0e162f979fff 4k E!IIHIE!EI .50 relro
S (StaCk) near end fel162f97a000-0e162f37afff 4k 00012009 .s0 data

Bel62f97baRR-Be162f37bFF T 4k E!IE!IE! .50 bss

Tfiffdeced@@-7f7fffTedfff 25608k stack growth area
Tfifffieed@a-7f7ffffedfff 8192k E!IIIE!E! stack

=& & &

= &=

One more: pinsyscall(SYS_execve)

This new Permission is smaller than a page

pinsyscall(SYS execve, &execve, libcstublen) IS called at program
startup [in either Id.so or crtO]

Then execve(2) may only be called from inside the specific system
libc call stub (which is generally less than 80 bytes long)

Before this, ROP attackers could use any syscall instrution they find
[iIn main program, ld.so, sigtramp, libc, or polymorphic on variable-
size instruction architecture] to reach execve(2)

Address caching depends upon Immutable Permission

ROP attacker’s situation now

Stack damage — want to ROP - and then problems:

Cannot find as many (or any) gadgets: ASLR, random relink,
reduction, RETGUARD removed tail gadgets

Cannot perform system call from SP or PC pivoted positions

Cannot mutate memory permissions
Cannot scan address space for some types of info leak
Cannot reuse a known syscall location in Id.so to reach execve

Immutable mappings may help with other inexpensive checks

All mitigations on one page

WAX stack-protector (stack damage detect) .rodata-use

ASLR library-random-relinking library-random-order-mapping
fork+exec policy

SROP-blocking setjmp-cookie
RETGUARD (tail CFl, stack overflow detect, 100% coverage)
x86 polymorphic gadget reductions

syscall PC & SP checks, execve stub check
mimmutable, xonly, xonly emulation

Conclusion & Questions

We should push attackers towards methods

requiring more intense labour
requiring features which are disrupted
with worse success rates
All these Mitigations try to achieve these goals

Real World impact will be judged in coming years

»,My attack didn’t work on OpenBSD but it worked on Linux*
Hacker77, September 2031

