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ABSTRACT

PORTING OPENBSD TO RISC-V ISA

by Brian Bamsch, Wenyan He, Mengshi Li, Shivam Waghela

The RISC-V ISA shows significant promise as an upcoming, flexible ISA for general

purpose computing. However, adoption of RISC-V is largely hindered by lack of software

support, particularly among popular operating systems. Only a few operating systems,

including Linux and FreeBSD, have been updated to support RISC-V. Many other

operating systems, including OpenBSD, do not yet run on RISC-V hardware. This project

makes the first step towards a port of OpenBSD by introducing support for the RISC-V

ISA within the OpenBSD kernel. As part of this effort, a deep-dive is performed into the

machine-dependent aspects of bootstrap, memory, trap, process, and device subsystems of

the OpenBSD kernel. The ported OpenBSD kernel has implemented early bootstrap logic

in assembly, adapted PMAP to RISC-V MMU in Sv39-mode, developed trap handlers for

interrupts and exceptions, implemented routines for process fork and context switch, and

developed drivers to probe and attach machine-dependent devices. With these efforts, the

OpenBSD kernel can boot on a QEMU-emulated RISC-V hardware target up through

entry into the init process.
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1 INTRODUCTION

1.1 RISC-V

RISC-V is an Instruction Set Architecture (ISA) whose development was started by

UC Berkeley in 2010 [1]. The RISC-V ISA is open-source and royalty-free and does not

carry the same restrictive licensing burden as other ISAs, including x86 and ARM.

Developer manuals and documentation for the RISC-V ISA are made available for free

from the RISC-V Foundation which owns, maintains, and publishes documents for all

intellectual property pertaining to the RISC-V ISA.

The RISC-V ISA follows a modular design philosophy which aims to be both flexible

and versatile for a broad range of different applications. The RISC-V ISA defines two

frozen base instruction sets1, RV32I and RV64I, which provide only a limited set of

integer instructions. All other ISA features come as extensions [2] to the base instruction

set. These extensions provide general purpose features such as multiplication and division

(M), atomic instructions (A), single-precision floating-point (F), and double-precision

floating-point (D). The set of features supported by a particular implementation of the

RISC-V ISA are identified by its implementation identifier.

ISA-level modularity gives control back to vendors to choose an implementation that

best fits their specific application. Embedded platforms might implement RV32EC — the

32-bit base instruction set optimized for embedded systems with support for compressed

format instructions — to optimize for a smaller silicon footprint and lower power

consumption. More powerful machines intended to run a full-fledged operating system

might implement RV64GC which provides a useful set of features for general purpose

computing.

1. The RISC-V ISA also defines two additional base instruction sets: RV32E and RV128I. The former reduces the
number of registers from the RV32I base instruction set for embedded platforms and the latter includes 128-bit support.
Unlike RV32I and RV64I, these two base instruction sets are not yet ratified.
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The RISC-V ISA has an advantage over older ISAs due to the benefit of hindsight.

RISC-V incorporates ideas learned from other popular instruction sets that have had

multiple decades to mature in the marketplace [3]. Unlike more mature instruction sets,

the RISC-V ISA is not bogged down by decades-worth of backward compatibility over

multiple generations of hardware.

The RISC-V ISA also benefits from its openness and transparency. Unlike other ISAs

whose implementation details are obscured behind non-disclosure agreements, the

RISC-V ISA adopts a model which encourages collaboration. A number of open-source

implementations of the RISC-V ISA are already available for experimentation [4].

Open-source hardware implementations benefit from the diverse perspectives of their

individual contributors which help harden the hardware against security threats over time.

Combining a hardened open-source hardware platform with a hardened operating system

kernel (e.g., OpenBSD) will lead to the development of noticeably more secure systems.

The RISC-V ISA is not without its weaknesses, of which its newness is a major one.

Unlike well-established ISAs, the RISC-V ISA is just starting to gain traction in

commercial applications and has not yet seen widespread adoption. The lack of adoption

can be attributed to both the newness of the architecture and lack of software support for

RISC-V. Only a handful of operating systems, including FreeBSD and Linux, have been

updated to support the RISC-V ISA. The majority of operating systems do not support

RISC-V yet. OpenBSD is one of them.

1.2 OpenBSD

OpenBSD is a Unix-like operating system which descends from the Berkeley Software

Distribution (BSD) series of operating systems. OpenBSD was forked in 1995 from

NetBSD by Theo de Raadt. Since then, OpenBSD has become renowned for its strong

security principles and contributions to open-source software, for example, OpenSSH.
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OpenBSD puts decades worth of security research and development into practice and

prides itself on its strong security record. OpenBSD touts itself as one of the most secure

operating system kernels available on the market today. Its strong security record is

maintained through the practice and application of a number of methodologies, including:

• Comprehensive file-by-file audits of all critical software components.

• Proactive endeavors to identify and address bugs even if not proven exploitable.

• Applying strong security settings in the default operating system install.

• Limiting the default set of active services to reduce attack surface.

Despite OpenBSD’s persistent focus on security, a number of relatively recent

hardware-level security issues, including Spectre [5] and Meltdown [6], have shown that

software systems are only demonstrably as secure as their underlying hardware platforms.

This brings into question the security practices of existing hardware platforms and

whether existing architectures can adapt to a changing security landscape.

1.3 Justification

The rise in prevalence of obscure hardware-level security problems in recent years has

come to show that security is not a single faceted problem and cannot be completely

addressed from within a single context. The security of software platforms such as the

OpenBSD operating system depends heavily on the security of their underlying hardware

platforms. The RISC-V ISA’s promise to remain truly open and transparent is expected to

help lead the development of security-hardened hardware platforms. This project takes the

first step in that direction by porting a full OpenBSD operating system to the RISC-V

ISA, starting with the OpenBSD kernel.
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2 TECHNOLOGIES DESCRIPTION

2.1 Toolchain

2.1.1 LLVM

The LLVM Project is a collection of modular and reusable compiler and toolchain

technologies [7]. Both LLVM and the GNU Compiler Collection (GCC) support the

RISC-V ISA as of their latest releases. LLVM is leveraged in this project in large part due

to a general trend seen across the BSDs moving away from GCC in favor of LLVM2.

More importantly, RISC-V has been promoted from an experimentally-supported target to

an officially-supported target starting with LLVM 9.

The LLVM Project toolchain provides a vast suite of build tools such as a C compiler

(Clang), linker (LLD), debugger (LLDB), and more. This section focuses on only the

subset of these tools which were critical to successfully porting the OpenBSD kernel.

2.1.1.1 Clang: The front-end compiler infrastructure of the LLVM Project for C

and C-based languages [10]. The Clang compiler differs from GCC, its GNU counterpart,

in its modular approach to the three-phase compiler pipeline. A three-phase compiler

consists of a front end, an optimizer, and a back end as shown in Figure 1.

Fig. 1. Components of three-phase compiler.

The LLVM utilizes a modular approach to break the pipeline into three independent

phases. Clang is one example of a language front end for the LLVM compiler toolchain. It

is responsible for transforming C-based source code into LLVM Intermediate

2. FreeBSD fully transitioned to LLVM in 2012 [8] and OpenBSD’s x86 variant transitioned to LLVM in 2017 [9].
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Representation (IR). LLVM IR is a low-level RISC-like virtual instruction set which

represents a program as it passes through the optimizer and the back end of the LLVM

compiler pipeline. IR is the key to LLVM’s modularity. A front end can be written to

leverage the existing LLVM common optimizer and back end. Similarly, a new back end

can be written to generate machine code for a new target machine with a specific

architecture, such as the RISC-V ISA.

Fig. 2. LLVM’s modular approach to the three-phase compiler.

In this project, LLVM is leveraged as the cross-toolchain for building the OpenBSD

kernel for the RISC-V architecture. The LLVM toolchain compilation procedure and

patches added in this project are further detailed in Section 5.1.2.

2.1.1.2 LLD: The platform-independent linker provided by the LLVM compiler

toolchain. LLD is responsible for combining the machine code modules and libraries

produced by the Clang front-end compiler into an executable format. It is designed as a

drop-in replacement for the GNU linker which makes it easy to be inserted into the build

process.
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LLD is leveraged in this project to combine all machine-independent and

machine-dependent kernel modules into a single compiled OpenBSD kernel file (bsd) as

shown in Figure 3.

Fig. 3. LLD combines OpenBSD kernel modules into an executable binary.

2.1.2 QEMU

QEMU is a flexible open source machine emulator and virtualizer [11]. QEMU can

perform a full system emulation of non-native hardware targets. For RISC-V, QEMU

supports emulating either a generic virtual hardware platform or some commercially

available developer kits such as the SiFive Freedom Unleashed U540 platform. QEMU

support for RISC-V architecture is described in more detail in [12].

Hardware virtualization is essential to success of this project due to lack of access to

physical RISC-V hardware. Whereas 64-bit x86 processors are easily accessible via cloud

providers, RISC-V hardware is not yet widely available through consumer channels. Even

though companies such as SiFive sell RISC-V hardware development kits, these kits are

still much more expensive than mass-produced hardware based on x86 or ARM. Hence

QEMU is utilized as a substitute for real RISC-V hardware to run and debug the ported

OpenBSD kernel.
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2.1.3 GDB

The GNU Debugger (GDB) is a powerful debugging tool that supports a number of

target architectures. GDB provides useful commands to inspect, single-step, and debug

applications. Most importantly, GDB offers functionality to perform remote debugging

which enables debugging virtual RISC-V targets via the QEMU GDB stub as shown in

Figure 4.

Fig. 4. Remote debugging QEMU via the GDB stub.

GDB was selected as the remote debugger for this project despite the heavy

investment in the LLVM toolchain. In practice, GDB proved to be more reliable than the

LLVM equivalent for remote debugging the OpenBSD kernel via the QEMU GDB stub.

2.2 RISC-V

2.2.1 Privilege Modes

Privilege modes are a hardware-level security mechanism provided by the RISC-V

ISA. This mechanism plays an important role in providing isolation between different

software layers. The RISC-V Privileged Architecture Specification defines three privilege

modes: Machine (M) mode, Supervisor (S) mode, and User (U) mode.

Not all implementations of the RISC-V ISA support all these three privilege modes.

An embedded system, for example, typically only implements one or two of these

privilege modes as shown in Table 1. Systems intending to run a full Unix-like operating

system such as OpenBSD need to implement all three privilege modes.
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Table 1
Supported Combinations of RISC-V Privilege Modes

Number of Levels Supported Modes Intended Usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems

The privilege modes defined by the RISC-V ISA are strictly ordered. A higher

privilege mode has access to a superset of features and permissions granted by all lower

privilege modes. For example, Machine-level instructions can only be executed in

machine-mode. However, user-level instructions can be executed in machine-mode,

supervisor-mode, and user-mode. Virtual memory address translation is the only

exception to this rule in that it is supported in supervisor-mode and user-mode but not

machine-mode. The role of each privilege mode within the context of a system running a

traditional operating system is illustrated in Figure 5.

Fig. 5. HW-OS-App three layer hierarchy.

2.2.1.1 Machine-Mode: The highest privilege mode intended for bare-metal /

first-stage bootloader usage. Machine-mode provides unfettered access to the entire

machine. All RISC-V HARTs (short for HARdware Thread) start in machine-mode and
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can drop into lower privilege modes when entering lesser-privileged software layers.

Within the scope of this project, the Berkeley Boot Loader (BBL) runs in machine-mode

and is responsible for dealing with traps to machine-mode triggered by the lower privilege

modes. BBL loads the OpenBSD kernel into system memory and drops into

supervisor-mode upon entry into the OpenBSD kernel.

2.2.1.2 Supervisor-Mode: The middle privilege mode intended for operating

system usage. Supervisor-mode provides access to most privileged instructions and

system I/O functions and supports changing the virtual memory address translation

scheme. Within the scope of this project, the OpenBSD kernel runs in supervisor-mode

and is responsible for dealing with traps triggered by user-mode processes. The OpenBSD

kernel loads user programs into system memory and drops into user-mode when entering

a user process.

2.2.1.3 User-Mode: The lowest privilege mode intended for conventional

application usage. User-mode is restrictive and is largely controlled by the operating

system kernel which runs in supervisor-mode. User-mode applications are given access to

unprivileged instructions and access system devices indirectly via the operating system

kernel. Within the scope of this project, user-mode processes spawned by the OpenBSD

kernel run in user-mode. The OpenBSD kernel running in supervisor-mode is given

fine-grained control over user-mode processes.

2.2.2 Execution Environments

An execution environment refers to the context under which some piece of software

runs. A piece of software interacts with its execution environment via a binary interface,

which defines the set of instructions and higher-level functions provided by the execution

environment. RISC-V software remains portable across execution environments which

implement a specific binary interface.
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Porting an operating system to RISC-V involves dealing with two execution

environments: the Supervisor Execution Environment (SEE) and the Application

Execution Environment (AEE). The relationship between these environments and the

operating system is shown in Figure 6.

Fig. 6. SEE-AEE-App three layer hierarchy.

2.2.2.1 Supervisor Execution Environment: The supervisor execution

environment is the context under which an operating system executes. The SEE can be a

simple bootloader or a hypervisor-provided virtual machine. An operating system

interacts with its SEE via the Supervisor Binary Interface (SBI) which comprises the

user-level and supervisor-level ISA along with a defined set of SBI functions [13]. The

SBI represents the compatibility layer between an operating system and its SEE. An

operating system binary compiled for a single SBI can be run on any SEE as long as the

SEE exposes the correct SBI. In this project, the OpenBSD kernel is adapted to the SBI

exposed by the Berkeley Boot Loader SEE.
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2.2.2.2 Application Execution Environment: The application execution

environment is the context under which user-mode programs execute. AEE is normally

provided by an operating system such as OpenBSD. Similar to SEE, AEE exposes an

Application Binary Interface (ABI) which comprises the user-level ISA and a defined set

of ABI function calls, often referred to as system calls (or syscalls for short). The ABI

varies across operating systems but is generally stable between releases of an operating

system. The portability of an application binary is limited only by the target ABI. The

OpenBSD AEE and ABI are touched upon in the implementation of the

machine-dependent aspects of the OpenBSD kernel system call handler.
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3 PROJECT OVERVIEW

3.1 Development Environment

• A host machine running OpenBSD for source code editing and compilation.

• A cross-toolchain to compile kernel source code to non-native RISC-V targets.

• A virtual or physical RISC-V hardware platform with Memory Management Unit

(MMU) support for Sv393.

• A bootloader providing the supervisor execution environment for the OS kernel.

• A debugger to remotely debug a RISC-V hardware target and inspect the kernel.

3.2 Functional Requirements

3.2.1 Essential

• Provide “config(8)”-syntax based kernel configuration.

• Provide “files.config(5)”-based file lists for Makefile generation.

• Construct machine-dependent kernel components to provide machine-independent

kernel components with an interface to hardware, including:

– System Bootstrap

– System Memory Management

– Kernel and User Process Management

– Interrupt and Exception Handling

– Device Configuration and Management

• Boot OpenBSD kernel to copyright message on virtual RISC-V hardware platform.

3.2.2 Desired

• Support Symmetric Multi-Processing (SMP) for multi-processor RISC-V hardware.

• Boot OpenBSD kernel to copyright message on physical RISC-V hardware platform.

3. Sv39 refers to the page-based virtual memory address translation mode that supports 39 addressable bits of virtual
memory address space. Sv48, which appears later in this report, refers to the page-based virtual memory address
translation mode that supports 48 addressable bits of virtual memory address space.

12



3.2.3 Optional

• Cross-compile OpenBSD userland components (libc, libcompiler rt, etc.)

• Boot OpenBSD kernel through to multi-user login prompt on RISC-V hardware.

• Bootstrap build toolchain inside OpenBSD running on RISC-V hardware.

• Provide working OpenBSD RISC-V install media.

• Publish one or more compiled software binaries for OpenBSD on RISC-V.

• Add device support for non-essential RISC-V hardware devices.

3.3 Non-functional Requirements

3.3.1 Essential

• Standardization

– Adhere to POSIX and ANSI standards.

• Quality

– Discourage use of hacks and workarounds.

– Adhere to OpenBSD source code auditing guidance.

– Provide well-documented source code.

3.3.2 Desired

• Stability

– OpenBSD kernel remains stable under steady-state operation.

• Security

– Apply security best practices while implementing kernel code.

3.3.3 Optional

• Performance

– Keep OpenBSD kernel overhead to a minimum, if possible.

• Consistency

– Keep the ”look and feel” of OpenBSD on RISC-V consistent with other ISAs.
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3.4 Milestones

The primary goal of this project is to port the OpenBSD kernel to the RISC-V ISA. A

number of smaller milestones pave the way to this goal and beyond. These milestones

track work items from early development environment setup through stretch goals which

identify nice-to-have features that are not considered critical to a successful OpenBSD

kernel port. The milestones are enumerated below:

1) Development Environment

a) Configure and build Clang+LLVM toolchain with support for the RISC-V ISA.

b) Configure and build QEMU with support for emulating RISC-V hardware.

c) Configure and build BBL to serve as bootloader for the OpenBSD kernel.

d) Configure and build GDB to remotely debug the OpenBSD kernel on QEMU.

2) OpenBSD Kernel Source Tree

a) Populate OpenBSD tree with minimum viable RISC-V kernel build boilerplate.

b) Stub out required machine-dependent headers and source files for kernel build.

c) Define, derive, or otherwise write out machine-dependent code, including:

• Early machine initialization code (locore.S)

• Standard system data types

• RISC-V machine registers

• System exception & interrupts handlers

• Per-CPU information structure

• Process control structures

• Stack frames for trap, exception, signal, context switch, etc.

• Memory management structures

• RISC-V hardware device drivers

3) OpenBSD Kernel Cross-Compilation & Linking

a) Resolve remaining unresolved kernel symbols during initial kernel compilation.
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b) Generate OpenBSD RISC-V kernel binary using RISC-V cross-toolchain.

c) Build BBL with OpenBSD RISC-V kernel payload.

4) OpenBSD Kernel Bring-up

a) Hack at kernel implementation until OpenBSD kernel boots to copyright message.

b) Boot OpenBSD through autoconf (device probing and configuration)

c) Bring up additional system devices, including:

• Virtual block devices (e.g., VIRTIO BLK, the VirtIO Block Driver)

• Virtual network device (e.g., VTNET, the VirtIO Ethernet Driver)

d) Fork and exec to init process

5) OpenBSD Multi-User [Stretch Goal]

a) Build OpenBSD userland components

b) Support Simultaneous Multi-Processing (Optional)

6) OpenBSD RISC-V Installer & Bootloader [Stretch Goal]

a) Write Installer for the RISC-V OpenBSD Port

b) Write Bootloader for the RISC-V OpenBSD Port

3.5 Dependencies

Porting the OpenBSD kernel to RISC-V carries a number of external dependencies,

particularly around the availability of tooling that supports the RISC-V ISA. The RISC-V

ISA is incredibly new relative to the other mainstream ISAs. The Intel x86 family of ISAs

goes back as far as 1978 and the ARM ISA dates back to 1985. These ISAs have had

plentiful time to mature and grow their market share over a few decades. Support for the

RISC-V ISA, while growing, is still largely experimental across various virtualization

products and build tools.

The success of this project depended heavily on support for the RISC-V ISA in

virtualization tools such as QEMU. Companies including SiFive have made great strides

in building out hardware platforms for RISC-V development. Unfortunately, these
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development platforms are far too expensive to justify for purchase within the scope of

this project. Instead, QEMU allows for emulation of virtual RISC-V hardware targets

which are sufficient for kernel bootstrapping. While efforts to support the RISC-V ISA in

QEMU only began in early 2018, other BSD-based operating systems including FreeBSD

were successful in bootstrapping their operating system kernels on QEMU’s virtual

RISC-V hardware. As such, it is optimistic that QEMU’s support for virtual RISC-V

hardware targets would also be suitable in the work to bootstrap the OpenBSD kernel on

RISC-V.

In addition to virtualization tools, the success of this project depended on support for

the RISC-V ISA in build toolchains such as LLVM. The decision to bootstrap with the

LLVM instead of GNU toolchain did carry some risk at the early stages of the project as

LLVM support for the RISC-V ISA was still considered experimental until September

2019. The availability of the GNU toolchain as a fallback to LLVM helped to reassure

that this project would not come to a complete standstill due to toolchain issues.
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4 PROJECT ARCHITECTURE

4.1 Overview

Operating systems are responsible for interfacing high-level applications with the

low-level hardware resources provided by a computer system. The OS kernel serves

user-mode applications by exposing a well-documented set of functions via an application

binary interface which sits atop the machine-independent (MI) layer of the kernel. The MI

layer of the OS kernel relies on a machine-dependent (MD) layer which provides

abstractions over the underlying hardware resources. This multi-layer hierarchy is

depicted in Figure 7.

Fig. 7. OS connects hardware and applications.

Porting an existing OS to a new architecture is a very different problem than writing

an OS from scratch. The former focuses almost entirely on the MD layer of the OS kernel.

The basic strategy involves rewriting the architecture-specific routines and drivers of the

MD layer to provide an interface to the hardware for the MI layer. The MI layer remains
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largely unchanged. OpenBSD’s MD layer can be divided into five subsystems, as shown

in Figure 8. These subsystems are summarized in the sections that follow. Fine-grained

implementation details for each are presented in Section 5.

Fig. 8. Decomposition of machine-dependent kernel layer.

4.2 Bootstrap Subsystems

Booting a Unix-like operating system on a RISC-V machine involves a multi-stage

bootstrap process. For the OpenBSD operating system, the bootstrap process finishes

upon entry into the MI OS kernel initialization routine. This bootstrap procedure can be

divided into three stages:

1) Stage 1 Bootstrap: Hardware Reset

2) Stage 2 Bootstrap: Berkeley Boot Loader

3) Stage 3 Bootstrap: OS Kernel Bootstrap (OpenBSD)

4.2.1 Stage 1 Bootstrap: Hardware Reset

Stage 1 of system bootstrap begins from the moment that power is applied to a

RISC-V processor. Applying power to the RISC-V circuitry generates a reset signal

which places the hardware into a known starting state. For virtual hardware provided by
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QEMU, this hardware reset is emulated in software. The routine that implements this,

riscv_cpu_reset(), performs the following actions:

• Set privilege level to machine-mode.

• Set mstatus.MIE to 0 to disable interrupts.

• Set mstatus.MPRV to 0 to turns off address translation.

• Initialize mcause register to 0.

• Set pc to 0x00001000 which targets the trampoline code in system ROM.

The trampoline code in system ROM acts as the first-stage bootloader. This small bit

of code builds the Flattened Device Tree (FDT) to describe system hardware and loads the

second-stage bootloader (BBL) into memory at address 0x80000000. The first-stage

then yields control to the second-stage bootloader, passing along the address of the FDT.

4.2.2 Stage 2 Bootstrap: Berkeley Bootloader

The second stage of system bootstraps begins upon entry into the Berkeley Bootloader.

BBL runs entirely in machine-mode, the highest RISC-V privilege mode, and provides the

supervisor execution environment for the OS kernel. As described in paragraph 2.2.2.1,

the combination of SEE and SBI is what allows a compiled kernel binary to remain

portable across RISC-V hardware platforms. BBL abstracts away the underlying hardware

and, instead, exposes a number of SBI functions which allow the OS kernel to interface

with the machine-mode layer. BBL provides the following functionalities:

• Emulation of illegal instructions.

• A machine-mode trap handler for machine-level exceptions and interrupts.

• Routines to manage periodic timer interrupts.

• Chain loading and access to the initial console device.

As mentioned previously, the first stage of the system bootstrap process loads BBL at

base address 0x80000000. The base address also serves as the entry point into BBL.

Within the BBL executable, a reset_vector is mapped to this base address which

19



kicks off the BBL bootstrapping process. This bootstrapping procedure performs roughly

the following sequence of events:

1) Selects one RISC-V HART to serve as the main HART for BBL. All other RISC-V

HARTs are temporarily put to sleep until BBL is ready to transfer control to the OS

kernel.

2) Filters the FDT received from the previous-stage bootloader. This removes

references to some hardware and other machine-specific details that are irrelevant

during supervisor-mode operation.

3) Wakes up all other HARTs from sleep. All HARTs join in executing the remaining

steps up through OS kernel entry.

4) Reads mhartid Control and Status Register (CSR). The value read from this

register is later passed to the OS kernel to uniquely identify each RISC-V HART.

5) Configures physical memory permission (PMP) for supervisor-mode to allow full

access to system memory resources.

6) Configures machine-mode trap handlers and stack. The BBL-provided trap handler

code deals with machine-mode exceptions and interrupts.

7) Drops the HART into supervisor-mode before jumping to the start of the BBL

payload. In this project, the payload is a compiled OpenBSD kernel.

4.2.3 Stage 3 Bootstrap: OS Kernel Bootstrap

Stage 3 of system bootstrap begins upon entry into the OS kernel starting with

locore.S. The OS kernel runs in supervisor-mode within the SEE provided by BBL. The

kernel bootstrap procedure handles the bulk of the workload in preparing the system to

initialize the OpenBSD kernel. This process includes:

• Setting up initial kernel page tables.

• Performing the switch into paged virtual memory mode.

• Probing and attaching hardware devices.
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• Configuring the supervisor-mode trap handler.

• Initializing the global pointer and stack pointer.

• Propagating kernel arguments to the MI kernel.

• Jumping into the MI kernel initialization routine.

4.3 Memory Subsystem

OpenBSD uses the UVM virtual memory system to manage system memory resources

across multiple virtual memory address spaces [14]. UVM provides a high-level

machine-independent view of system memory to the kernel as well as user-mode

processes. UVM is a multi-layer system consisting of a large machine-independent layer,

which manages virtual address spaces, and a lightweight machine-dependent layer, which

serves as the interface to the system’s Memory Management Unit.

The UVM external interface exposes high-level memory operations such as allocating

pageable or non-pageable memory regions, setting permissions on those memory regions,

and adjusting the size of allocated memory regions. Internally, the machine-independent

layer of UVM manages software structures which represent the layout of the virtual

address space for each process on the system. As necessary, the machine-independent

layer delegates to the machine-dependent layer to insert or remove virtual-to-physical

address mappings.

The machine-dependent layer modifies in-memory page tables which affect the virtual

memory layout exposed by the MMU. The machine-dependent layer must understand the

memory address translation schemes supported by the target architecture. The relationship

between user-mode applications, the kernel, and the sub-layers of the memory

management system is illustrated in Figure 9.

The 64-bit variant of the RISC-V ISA supports three memory address translation

modes. As of publication of “RISC-V Privileged Architecture Specification v1.11”, these

modes include: Bare, Sv39, and Sv48. The specification also reserves two additional
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Fig. 9. Multi-layer memory management system.

modes for future use: Sv57 and Sv64. The Bare mode provides a simple identity

mapping between virtual and physical memory addresses without memory protection. The

Sv39 and Sv48 modes are 4 KiB page-based memory address translation schemes.

In porting the OpenBSD kernel, only Sv39 mode is supported to keep a tight bound

on complexity in the memory subsystem. Sv39 mode is similar in nature to the

page-based memory schemes used in other architectures, such as 64-bit ARM. Sv39

mode uses a 3-level page table walk to translate a virtual address to a physical address.

The virtual to physical address translation procedure for Sv39 is portrayed in Figure 10.

As shown in Figure 10, a virtual address with 39 addressable bits maps to a physical

address of 56 addressable bits. During translation, a page fault can occur if an invalid

entry is encountered or if a permissions check fails. Page faults which arise during

user-mode operation will trigger a trap to the supervisor trap handler, which further

delegates to UVM to resolve the fault. A page fault may be resolved by mapping a

missing entry into the page table, or by terminating the process which triggered the fault.

Assuming the virtual to physical address translation does not cause a page fault, the

translation of a virtual address to a physical address can be visualized as in Figure 11.
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Fig. 10. The Sv39 memory address translation state machine.

Virtual to physical address translation allows the OpenBSD kernel to share limited

memory resources among a large number of resident processes. Each resident process is

assigned a dedicated virtual address space identifier. The layout of each virtual address

space is dictated by the layout as defined in the machine-dependent kernel source, and the

layout is baked into the compiled kernel. This porting work inherits the virtual memory

layout adopted by FreeBSD’s RISC-V port. The virtual address space layout is depicted

in Figure 12.

The Sv39 memory address translation mode provides 512 GiB of addressable virtual

address space. The lowest 256 GiB of virtual address space is reserved for user-mode
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Fig. 11. Sv39 memory address translation for a 4 KiB page.

processes. The highest 256 GiB of virtual address space is reserved for the kernel. 32 GiB

of the kernel-reserved space, starting from 0xFFFFFFC000000000, is assigned to the

Kernel Map to hold kernel code and data. Another 128 GiB of the kernel-reserved space,

starting from 0xFFFFFFD000000000, is assigned to the Direct Map which is an

offset-identity mapping of physical memory. The remaining 96 GiB of kernel-reserved

space is unused.

4.4 Trap Subsystem

A trap is a form of synchronous event which causes a RISC-V HART to halt its

current activities and immediately transfer control to a trap handler. This document

focuses exclusively on supervisor-mode traps which are handled by the OpenBSD kernel.

This document uses the terms exception, interrupt, and trap in alignment with the
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Fig. 12. Virtual address space layout (Sv39) for the ported OpenBSD.

definitions provided by The RISC-V Instruction Set Manual, Volume I: User-Level

ISA [15]:

• “we use the term exception to refer to an unusual condition occurring at run time

associated with an instruction in the current RISC-V thread.”

• “we use the term interrupt to refer to an external asynchronous event that may cause

a RISC-V HART to experience an unexpected transfer of control.”

• “we use the term trap to refer to the transfer of control to a trap handler caused by

either an exception or an interrupt.”

4.4.1 Trap CSRs

The CSRs provided by the RISC-V ISA that are used for supervisor-mode trap

configuration and handling are listed below:
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• The Supervisor Status (sstatus) Register contains some bits for controlling

system trap behavior. This includes bits for controlling whether interrupts are

enabled (SIE, UIE), bits for indicating whether interrupts were enabled prior to

entering the supervisor-mode trap handler (SPIE, UPIE), and a bit for indicating

the privilege mode prior to entering the supervisor-mode trap handler (SPP).

• The Supervisor Cause (scause) Register indicates the cause for a trap. This

register dedicates one bit for distinguishing between traps caused by exceptions and

traps caused by interrupts. The remaining bits are used to uniquely identify the exact

type of exception or interrupt that occurred. This register takes on one of the states

as enumerated in Table 2.

• The Supervisor Trap Value (stval) Register holds an exception-specific value that

can be used by the trap handler to service the exception. During a misaligned

instruction exception, for example, this register will hold the virtual address which

triggered the exception.

• The Supervisor Trap Vector (stvec) Register holds the base address of trap vector

and the trap vectoring mode. The trap vectoring supports Direct-mode and

Vectored-mode.

– Direct-mode is the default value. In Direct-mode, stvec holds the base address

of the overall trap handler entry, and software is responsible for figuring out the

source of exception/interrupt and acting accordingly.

– Vectored-mode introduces a method to create a vector table that hardware uses to

achieve lower interrupt handling latency. When an interrupt occurs in

Vectored-mode, the pc will get assigned by the hardware to the address stored in

the vector table entry corresponding to the interrupt ID.
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• The Supervisor Interrupt Enable (sie) Register allows for specific subsets of

interrupts to be enabled or disabled. These interrupts include software interrupts,

timer interrupts, and external interrupts.

• The Supervisor Interrupt Pending (sip) Register contains information on pending

interrupts. As with sie, these interrupts include software interrupts, timer interrupts,

and external interrupts.

• The Supervisor Exception Program Counter (sepc) Register preserves the program

counter (pc) at the moment the trap occurs. This register can be modified during

trap handling to adjust the program counter upon return from the trap handler.

4.4.2 Trap Entry and Exit

RISC-V ISA specification aims to keep trap handling simple. The state of the

hardware is largely unchanged upon entry into the supervisor trap handler. Both hardware

and software benefit from this. Implementing trap handling in hardware is not only easier,

but supervisor software does not have to work around hardware-level assumptions.

All traps to supervisor-mode arrive at the OS kernel via the kernel trap entry point

installed in stvec during early bootstrap, as described in Section 5.3.5. Upon trap to the

supervisor, the hardware needs to complete the following tasks [16]:

• Save pc to sepc.

• Save privilege mode to sstatus.SPP.

• Save sstatus.SIE to sstatus.SPIE.

• Set sstatus.SIE to 0.

• Set scause to trap reason.

• Set stval with exception-specific value, if applicable.

• Set pc to trap handler base address which has been installed to stvec.

After making the state changes above, the hardware immediately begins executing the

kernel trap handler code. The initial entry point into the kernel trap handler is
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Table 2
RISC-V Supervisor Cause Register (scause) after Trap

Interrupt Code Description
1 0 User software interrupt
1 1 Supervisor software interrupt
1 2-3 Reserved for future standard use
1 4 User timer interrupt
1 5 Supervisor timer interrupt
1 6-7 Reserved for future standard use
1 8 User external interrupt
1 9 Supervisor external interrupt
1 10-15 Reserved for future standard use
1 �16 Reserved for platform use
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instructions
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10-11 Reserved for future standard use
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved for future standard use
0 15 Store/AMO page fault
0 �16 Reserved

machine-dependent code provided by the OS kernel which performs the transition into the

kernel. Since the changes to hardware state are limited, the kernel trap handler gets to

decide what state is saved upon entry into the kernel.

In addition to supervisor-level trap CSRs, the Supervisor Scratch (sscratch)

Register is often helpful in retaining state between entry into and exit from the kernel.

The sscratch register has no ISA-designated purpose, and thus the OS kernel can use
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it for any purpose. Within the OpenBSD trap handler, this register is used to quickly swap

between the user stack and the kernel stack upon entry into and exit from the kernel.

Once the state of the active process is saved and the kernel stack is switched onto the

HART, the trap handler attempts to route the trap within the kernel. The kernel reads the

scause register to identify the exact cause of the trap and delegates to the appropriate

sub-handler.

Upon completion of trap handling, control may return to the faulting process. The

state of the faulting process is restored onto the HART and an sret instruction triggers

the hardware to switch back to the process at its appropriate privilege mode. This equates

to the following steps:

• Restore privilege mode from sstatus.SPP.

• Restore sstatus.SIE from sstatus.SPIE.

• Restore pc from sepc.

4.5 Process Subsystem

The OpenBSD process subsystem is responsible for managing the life cycle of

processes within the operating system. Each process is an instance of an executable

program and operates in its own virtual address space. A process is represented in a

software structure, an instance of “struct process” which retains relevant

information about the process. The structure includes, among other things, a pointer to the

virtual address space structure used by the memory subsystem to manage virtual to

physical address mappings for the process.

Processes spawn from parent processes in response to certain syscalls provided by the

kernel. Child processes are typically spawned by some combination of the fork() +

exec() syscalls. An example of this is shown in Figure 13. The call to fork()

generates a new child process which is nearly identical to its parent and is almost always
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followed up by a call to exec() to load an executable and trigger Address Space Layout

Randomization (ASLR).

Fig. 13. Managing processes via system calls.

The OS kernel is responsible for managing access to hardware resources among

processes. On a given system, there might be a hundred or more processes competing for

access to just a handful of HARTs. To share HARTs between processes, the OS kernel

time-slices access to the HARTs with help from a periodic hardware timer interrupt.

Before a process is assigned to a HART, the OS kernel ensures that the periodic timer is

primed so that a trap will eventually force the process to yield the HART back to the

kernel scheduler. When the scheduling-related trap occurs, this signals to the kernel to

swap out the active process for another process as seen in Figure 14.

The trap causes the state of the HART to be saved into the Process Control Block

(PCB) to make way for a new process. The kernel scheduler selects another process to

take control of the RISC-V HART. The previous state of the selected process is restored

on the HART to complete the context switch into the new process. The

machine-dependent aspects of the context switch are explored in more detail in

Section 5.6.2.
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Fig. 14. Save and restore execution states in a context switch.

4.6 Device Subsystem

During system startup, the early system bootloaders enumerate system devices into a

structure known as the FDT. The FDT describes system hardware including the RISC-V

HARTs, the memory map, and the attached devices.

During OpenBSD initialization, the kernel runs through a process called autoconf.

The FDT serves as a guide for the OS kernel to properly discover and configure hardware

devices. During the autoconf process, the OS kernel traverses the FDT to match hardware

devices with compatible drivers using the system configuration table, which is generated

based on device definition in files.riscv64 and device configuration in a file named

GENERIC. The system configuration table describes the expected attachment points for

various devices and associates them with an appropriate driver.

The autoconf process is recursive in nature. The process begins by traversing devices

nodes attached at the root of the FDT. As device nodes are attached, their child nodes are
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expanded and traversed. The key routines for the autoconf process are enumerated in

Snippet 1.

void *
config_search(cfmatch_t func, struct device *parent, void *aux);

struct device *
config_attach(struct device *parent, void *match, void *aux, cfprint_t print)

struct device *
config_found_sm(struct device *parent, void *aux, cfprint_t print,

cfmatch_t submatch);

Snippet 1. autoconf key routines.

Given a parent device, config_search() identifies the best-matched child device

under a specific matching criteria. config_attach() will then attach the child device

to its parent in three steps. First, it allocates memory for the device’s software

configuration structure (config_make_softc()). This structure is then filled with

this device’s hardware information as parsed from FDT. Lastly, the device-specific

initialization logic is performed as provided by the device driver. At this stage, this

device’s child device will get attached recursively.

config_found_sm() locates the configuration data for a device and attaches it.

This boils down to making calls to config_search() and config_attach(),

consecutively. autoconf supports two modes of configuration: direct mode and indirect

mode. When a child device is provided via the aux argument, direct mode is used and

the device is attached directly. Otherwise, indirect mode is used which scans the bus to

match and attach a compatible device.

The device attachment hierarchy of this project is demonstrated in Figure 15. This

project provides definition, configuration, and driver-level code for machine-dependent

devices identified in this hierarchy. This is presented in Section 5.7.
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Fig. 15. The device attachment hierarchy.
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5 PROJECT IMPLEMENTATION

5.1 Development Environment Setup

This section briefly describes how to set up a development environment for the

purpose of porting OpenBSD to RISC-V ISA. An OpenBSD host machine is required for

source code editing and kernel cross compilation. Cross-compilation tools are mandatory

for building the OpenBSD kernel on an x86 host for a riscv64 target. The

cross-compiled kernel is encapsulated as payload into BBL and runs on a QEMU virtual

machine. GDB can then be attached to QEMU to single-step the OpenBSD kernel and

inspect its functionality.

5.1.1 OpenBSD Machine

The OpenBSD machine can be bare-metal or a virtual machine. This machine is used

for cross-compiling the OpenBSD kernel. The OpenBSD kernel building supports

incremental compilation which reduces the time necessary to recompile the kernel for

incremental updates to source code. However, some machine-dependent headers, such as

cpu.h, are widely-referenced across the OpenBSD source tree. Modifications to

widely-used headers can trigger re-compilation of large portions of the OpenBSD kernel

which can drastically increase build time.

Running OpenBSD as a virtual machine on a cloud-provider allows for flexibility in

tuning CPU and memory resources. The virtual machine can be scaled up for speed when

running a full kernel build and scaled down for cost-saving when running incremental

kernel builds. In this project, a customized OpenBSD installation image is created to

install OpenBSD on a cloud-resident virtual machine [17].

5.1.2 RISC-V Cross-Toolchain

LLVM is selected as the RISC-V cross-toolchain for this project. The pre-compiled

LLVM binaries in trusted OpenBSD-current software sources do not include stable
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support for RISC-V. Similarly, the latest version of LLVM in the OpenBSD ports

repository predates the inclusion of RISC-V as a stable target. LLVM 9 is the first LLVM

release to support RISC-V as an officially-supported, non-experimental target. In this

project, LLVM is compiled from source to obtain a working LLVM 9 toolchain with

support for RISC-V4. The build configuration used to produce the LLVM toolchain used

in this project is shown in Snippet 2.

# Run from within ${LLVM_PROJECT_ROOT}/build
$ cmake \

-DLLVM_ENABLE_FFI:Bool=False \
-DLLVM_ENABLE_TERMINFO:Bool=False \
-DLLVM_ENABLE_RTTI:Bool=False \
-DCMAKE_DISABLE_FIND_PACKAGE_LibXml2:Bool=True \
-DCMAKE_DISABLE_FIND_PACKAGE_Z3:Bool=True \
-DLLVM_TOOL_LLDB_BUILD:Bool=True \
-DLLVM_BUILD_LLVM_DYLIB:Bool=True \
-DLLVM_LINK_LLVM_DYLIB:Bool=True \
-DGO_EXECUTABLE=GO_EXECUTABLE-NOTFOUND \
-DCMAKE_DISABLE_FIND_PACKAGE_Backtrace:Bool=True \
-DLLVM_TARGETS_TO_BUILD:String="X86;RISCV" \
-DLLVM_ENABLE_PROJECTS:String="clang" \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=/usr/local/riscv \
-DCMAKE_CXX_FLAGS="-mno-retpoline" \
-G Ninja \
../llvm

$ ninja -j8

Snippet 2. CMake configuration for the LLVM cross-toolchain.

A patch to the LLVM toolchain was later applied to the LLVM toolchain to address

missing pre-processor defines during initial kernel compile. The missing pre-processor

defines were a side-effect of the LLVM toolchain not fully parsing the OpenBSD-specific

compile target: --target=riscv64-unknown-openbsd6.7. This patch, shown

in Snippet 3, was introduced to local copies of the LLVM toolchain source code to

address this issue.

4. The toolchain used in the project was later upgraded to LLVM 10.
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From ebd07b299e0c5e4d9cd0779861969b846fc8f2a6 Mon Sep 17 00:00:00 2001
From: Brian Bamsch <bbamsch@google.com>
Date: Mon, 14 Apr 2020 20:59:09 -0700
Subject: [PATCH] [RISCV] Add Target for OpenBSD

---
clang/lib/Basic/Targets.cpp | 2 ++
clang/test/Preprocessor/init.c | 3 +++
2 files changed, 5 insertions(+)

diff --git a/clang/lib/Basic/Targets.cpp b/clang/lib/Basic/Targets.cpp
index c063f8ca447..bacc2149fbe 100644
--- a/clang/lib/Basic/Targets.cpp
+++ b/clang/lib/Basic/Targets.cpp
@@ -389,2 +389,4 @@ TargetInfo *AllocateTarget(const llvm::Triple &Triple,

return new LinuxTargetInfo<RISCV64TargetInfo>(Triple, Opts);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<RISCV64TargetInfo>(Triple, Opts);

default:
diff --git a/clang/test/Preprocessor/init.c b/clang/test/Preprocessor/init.c
index 6966698549a..647563d92a9 100644
--- a/clang/test/Preprocessor/init.c
+++ b/clang/test/Preprocessor/init.c
@@ -9558,2 +9558,4 @@
// RUN: | FileCheck -match-full-lines -check-prefixes=RISCV64,RISCV64-LINUX

,! %s
+// RUN: %clang_cc1 -E -dM -ffreestanding -fgnuc-version=4.2.1 -triple=riscv64-

,! unknown-openbsd < /dev/null \
+// RUN: | FileCheck -match-full-lines -check-prefixes=RISCV64,RISCV64-

,! OPENBSD %s
// RISCV64: #define _LP64 1

@@ -9760 +9762,2 @@
// RISCV64-LINUX: #define unix 1

+// RISCV64-OPENBSD: #define __OpenBSD__ 1
--
2.26.0

Snippet 3. Diff of changes made to LLVM source to support
‘riscv64-unknown-openbsd6.7’.

5.1.3 QEMU

QEMU provides the virtual RISC-V hardware target used to bootstrap the initial

OpenBSD kernel port in this project. QEMU exposes a GDB stub which provides a

convenient mechanism to single-step the kernel and debug issues during kernel

initialization.

As explained in Section 4.2, supervisor-mode software such as the OpenBSD kernel is

compiled against the standard supervisor binary interface to increase portability. The
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OpenBSD kernel has to run within an SEE that exposes certain SBI functions. In this

project, BBL is responsible for providing the SEE to the OpenBSD kernel. The BBL

executable embeds the compiled OpenBSD kernel and sets up the appropriate SEE before

handing over control to the kernel payload. This BBL executable is passed to QEMU via

the kernel argument to boot the OS kernel.

5.1.4 GDB

The version of GDB shipped with OpenBSD-current does not support the RISC-V

ISA. Therefore, GDB needs to be built from source. Unfortunately, building GDB on

OpenBSD has been proved to be quite cumbersome. This issue is sidestepped by instead

running GDB on a different machine and debugging QEMU remotely. This project’s work

repository [17]: ‘02-Set up RISCV-GNU tool chain on Linux & OpenBSD’ provides a

step-by-step guide for this.

Figure 16 demonstrates a possible environment setup, where the OpenBSD machine is

dedicated to source code editing and kernel compilation while a remote Ubuntu machine

is utilized for building BBL, running QEMU, and debugging the kernel with GDB. BBL

building and QEMU can also run on the OpenBSD host machine, which is functionally

equivalent to the configuration in Figure 16.

5.2 Machine-Dependent Headers

The machine-dependent kernel components interface directly with the RISC-V

hardware and provide the necessary bindings to the machine-independent kernel

components. This section highlights a few of the relatively large set of

machine-dependent interfaces that have been implemented to support the RISC-V ISA.

5.2.1 Types ( types.h)

The Types header defines the machine-dependent data types. More specifically, it

assigns the exact-width, minimum-width, fastest minimum-width, and greatest-width
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Fig. 16. One possible setup of the develop environment.

integers to their appropriate underlying data types. This file also assigns types for

register-sized data, physical memory addresses, and virtual memory addresses. The types

defined in this file are used widely across the OpenBSD kernel.

5.2.2 Atomics (atomic.h)

The Atomics header defines a set of functions which are used to provide atomic

updates to memory. In particular, this header exposes atomic_setbits_int and

atomic_clearbits_int, which read a location from memory, set or clear bits

present in an integer-sized mask, and write the value back to the same location in memory.

This kernel header also provides memory barriers including: a barrier to wait on all

pending reads from memory, a barrier to wait on all pending writes to memory, as well as

a barrier to wait on all pending memory operations.

5.2.3 Endianness (endian.h)

The Endianness header interface provides a small set of functions to swap the

endianness of values in memory. The RISC-V baseline architecture uses little-endian byte

order but does not rule out the possibility for big-endian byte order implementations nor

implementations which support both in a configurable manner. While the baseline ISA
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does not allow for switching between processor endianness, the big-endian order is still

useful when supporting big-endian hardware.

Unfortunately, there is no finalized RISC-V specification for bit manipulation.

Implementing an endian swap currently requires manually performing swaps on

individual bytes. Snippet 4 shows the 64-bit endianness swap for RISC-V without bit

manipulation instruction support. Bit manipulation instructions will be introduced with

the B-extension to the RISC-V ISA.

static __inline __uint64_t
__swap64md(__uint64_t _x)
{

__uint64_t ret;

ret = (_x >> 56);
ret |= ((_x >> 40) & 0xff00);
ret |= ((_x >> 24) & 0xff0000);
ret |= ((_x >> 8) & 0xff000000);
ret |= ((_x << 8) & ((__uint64_t)0xff << 32));
ret |= ((_x << 24) & ((__uint64_t)0xff << 40));
ret |= ((_x << 40) & ((__uint64_t)0xff << 48));
ret |= (_x << 56);

return (ret);
}

Snippet 4. 64-bit endianness swap for RISC-V without bit manipulation instructions.

5.2.4 Trap Frames (frame.h)

The Trap Frames header defines various trap frames used by the kernel when

switching between execution contexts. These structures closely mimic the set of registers

defined by the RISC-V ISA. When an exception or signal occurs, the trap frame is pushed

onto the stack and all of the registers for the active process are saved. This allows for the

execution state of a process to be restored once control is handed back by the kernel.

The 64-bit RISC-V ISA defines 32 distinct 64-bit wide integer registers. In the trap

frame shown in Snippet 5, space is allocated for 31 of the 32 registers as the x0 register
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is hard coded to value 0 and does not need to be saved. In addition to registers, the trap

frame also includes a small number of CSRs which are useful during exception handling.

/*
* Exception/Trap Stack Frame
*/

#define clockframe trapframe
typedef struct trapframe {

/* Standard Registers */
register_t tf_ra;
register_t tf_sp;
register_t tf_gp;
register_t tf_tp;
register_t tf_t[7];
register_t tf_s[12];
register_t tf_a[8];
/* Supervisor Trap CSRs */
register_t tf_sepc;
register_t tf_sstatus;
register_t tf_stval;
register_t tf_scause;

} trapframe_t;

Snippet 5. Trap frame structure.

5.2.5 RISC-V Registers (riscvreg.h)

The RISC-V Registers header enumerates constants and functions useful for dealing

with RISC-V CSRs. It contains definitions for a number of RISC-V CSRs including the

sstatus CSR, which exposes information about the processor state.

5.2.6 Process Control Block (pcb.h)

The PCB header defines the process control block structure used by the kernel for

process management. It is closely related to context switch. It holds process state such as

the state of CPU registers at the time when a process was switched out of a HART. As

context switching is normally triggered by a trap, the PCB data structure struct pcb in

Snippet 6 contains a trap frame to hold the process state saved during trap to the kernel.

5.3 Early Bootstrap Implementation

Section 4.2 describes how the first two bootstrap stages prepare the system for the OS

kernel. This section continues describing the kernel bootstrap logic as implemented in
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struct pcb {
u_int pcb_flags;

#define PCB_FPU 0x00000001 /* Process had FPU initialized */
#define PCB_SINGLESTEP 0x00000002 /* Single step process */

struct trapframe *pcb_tf;

register_t pcb_sp; // stack pointer of switchframe

caddr_t pcb_onfault; // On fault handler
struct fpreg pcb_fpstate; // Floating Point state */
struct cpu_info *pcb_fpcpu;

void *pcb_tcb;
};

Snippet 6. Process control block structure.

locore.S. Specifically, this section only covers the booting process from the first kernel

instruction until the jump to initriscv(), the machine-dependent kernel initialization

routine.

The OpenBSD kernel runs in supervisor-mode. The control flow of locore.S is

summarized in Figure 17.

Fig. 17. OpenBSD early bootstrap control flow on RISC-V.

5.3.1 Starting State

When the OpenBSD kernel boots, it expects the system to be in the following state:
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1) Register a0 contains a unique HART identifier.

2) Register a1 contains a pointer to the FDT.

3) System memory is identity-mapped.

4) The OS Kernel ELF image is loaded into system memory.

5.3.2 Resolve Kernel Physical Base Address

The kernel physical base address is resolved with the help of virt_map, which is a

quad-word that stores virt_map’s virtual address. This virtual address is specified at

link time. By subtracting virt_map’s physical address from its virtual address, an offset

is calculated. This offset can be used to resolve a physical address from a virtual address

which falls in the kernel virtual address space. The offset is applied to KERNBASE, the

kernel virtual base address, to resolve the physical base address of kernel, which is stored

in register s9 for further reference.

5.3.3 Determine Boot HART

The OpenBSD kernel expects a single HART to boot the kernel. However, RISC-V

HARTs enter the kernel in an arbitrary order from BBL. To handle this impedance

mismatch, a very short Atomic Memory Operation (AMO) sequence is executed to select

a boot HART. All HARTs attempt to atomically swap a ‘1’ into a location in memory.

The HART which successfully swaps its ‘1’ into this memory address, stealing the ‘0’

value held in this location, wins the HART lottery and is chosen to boot the OpenBSD

kernel. All other HARTs wait until the boot HART signals that the kernel is ready for

multi-processor entry.

5.3.4 Set up Page Table

During kernel compile, regions within the .data section are reserved for the initial

L1 page table, L2 page table, and L2 device map page table. The kernel builds the initial

page tables in these pre-allocated regions of memory. Page Table Entries (PTEs) are
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calculated and inserted into these page tables to map the kernel image and FDT into the

kernel virtual address space. The detailed procedure for this is shown in the right-most

column of Figure 17. The resultant page table structure is shown in Figure 18.

Fig. 18. The initial page table at bootstrap stage.

Once the initial kernel page tables are constructed, a Physical Page Number (PPN) is

calculated from the physical address of pagetable_l1. The PPN is combined with the

Sv39 virtual address translation mode identifier and written to the supervisor address

translation and protection (satp) register to enable paging.
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5.3.5 Set up Supervisor Trap Vector

The supervisor trap handler is configured by writing the address of

cpu_trap_handler to the stvec CSR. This function serves as the entry point into

the kernel for all interrupts and exceptions. Interrupt and exception handling is described

in Section 5.5.

5.3.6 Jump to C Routine

The kernel prepares for entry into the C runtime:

1) Set up Global Pointer gp.

2) Set up Stack Pointer sp.

3) Clear BSS.

4) Fill boot parameters to stack.

Once the C runtime is ready, the boot HART enters into initriscv() which

performs more machine-dependent initialization. Afterwards, the entry into main()

triggers machine-independent kernel initialization. Later, in the machine-independent

kernel initialization, all other HARTs are configured via init_secondary().

5.4 Memory Subsystem Implementation

OpenBSD relies on the UVM virtual memory system to manage memory resources.

The UVM system consists of two layers: a machine-dependent layer and a

machine-independent layer. The machine-independent layer is the larger of these two and

is shared across all supported architectures. It exposes memory resources at a higher level

abstraction over the memory scheme provided by the underlying hardware. The MI layer

manages memory of the underlying hardware indirectly through the machine-dependent

layer known as the physical map (PMAP). The PMAP layer understands the virtual

memory scheme provided by a specific target architecture and acts on requests from the

MI layer to map virtual memory addresses to physical memory addresses.
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Supporting the RISC-V ISA within the OpenBSD memory subsystem involves

adapting the PMAP layer to build and modify in-memory page table structures to control

the virtual memory layout exposed by RISC-V MMU. This section provides a deep dive

into the machine-dependent aspects of managing the RISC-V MMU. It includes both

initial MMU configuration early in kernel boot as well as the adaptation of the PMAP

layer to manage in-memory page table structures.

5.4.1 Bootstrapping the MMU

The default memory address translation scheme at system boot is Bare which

provides a simple identity mapping between virtual and physical memory addresses. In

this mode, the virtual memory address 0x80000000 maps to the physical memory

address 0x80000000. The other supported memory address translation modes are 4

KiB page-based virtual addressing schemes. Sv39 and Sv48 differ in the number of

addressable bits in their virtual address space. Sv39 mode has 39 addressable bits and

Sv48 has 48 addressable bits.

This default Bare memory address scheme is appropriate during kernel bootstrap as

it gives an unrestricted view of physical memory. The kernel bootstrapping code operates

in this mode to manually build the initial kernel page table structures using pre-allocated

regions of memory. These initial kernel page tables are configured to define the virtual

address space layout for the Sv39 page-based memory address translation scheme. The

initial kernel page tables map the OpenBSD kernel image, located at physical address

0x80000000, to two locations in the kernel’s virtual address space. The first location is

its long-term home at virtual address 0xFFFFFFC000000000. The second location is a

temporary identity-mapping at virtual address 0x80000000.

Snippet 7 provides a glimpse into how kernel bootstrapping code computes the

appropriate offset into the L1 kernel page table in order to insert the identity-mapped

kernel entry. This identity-mapped entry is a leaf node as identified by its protection bits.

45



Leaf page table entries inserted into L1 page table are GigaPage (1 GiB) mappings in

Sv39 mode.

/* step 0) Identity map kernel @ 0x80000000 */
/* Build PTE for 1 GiB identity-mapped GigaPage */
lla s1, pagetable_l1 // Physical Address
mv s2, s9 // Physical Address
srli s2, s2, PAGE_SHIFT // Shift 12 -- a 4K page
slli t5, s2, PTE_PPN0_S // Shift 10 -- ppn[2:0] = pte[53:10]
li t4, (PTE_KERN | PTE_X) // Initialize Protection Bits
or t6, t4, t5 // Build PTE for a 1 GiB GigaPage

/* Calculate VPN[2] for 1 GiB identity-mapped gigapage */
mv a5, s9 // VA -- identity mapped
srli a5, a5, L1_SHIFT // Shift 30, va[63:30] remain
andi a5, a5, 0x1ff // Only use va[38:30] as VPN[2]

/* Store L1 PTE entry */
li a6, PTE_SIZE // Each Page Table Entry is 8 bytes
mulw a5, a5, a6
add t0, s1, a5 // Calculate address within L1 Page Table
mv s8, t0 // Store address in L1 Page Table to unmap later
sd t6, (t0) // Write the PTE for Identity-Mapped Kernel

Snippet 7. Kernel bootstrap inserts an identity-mapped GigaPage to simulate Bare
memory mode identity mapping during the transition into Sv39 memory mode.

The temporary identity mapping serves to persist the existing memory layout in the

small time span between when the MMU is enabled and when the program counter jumps

to the newly-mapped virtual address space. Without this temporary mapping, the

transition into Sv39 mode would cause the program counter to point to an unmapped

region of virtual memory. With the identity-mapped kernel in place, the HART can

successfully fetch and decode the instruction immediately following the transition into

Sv39 mode which instructs the HART to relocate the program counter to the appropriate

location in the new virtual address space.

Once the kernel bootstrapping code has successfully jumped into the virtual address

space, the kernel identity mapping becomes obsolete and is unmapped from the L1 kernel

page table as shown in Snippet 8.
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/* Unmap the identity mapped kernel GigaPage */
sd x0, (s8) // s8 holds the address of PTE for identity mapped kernel
sfence.vma // Flush the TLB. Goodbye identity mapped kernel!

Snippet 8. The identity-mapped kernel GigaPage is removed from the L1 Kernel page
table immediately following the transition into the newly-mapped kernel virtual address
space.

Following the switch into Sv39 mode, the HART sees the kernel virtual address

space defined by the initial kernel page tables constructed during bootstrap as shown in

Figure 18. The initial kernel page tables are not managed by the UVM memory

management system. The UVM memory management system is bootstrapped later,

starting with the physical map.

5.4.2 Initializing the Physical Map

The machine-dependent PMAP layer of the UVM memory management system is

initialized during kernel bootstrapping to provide a mechanism for managing spare

regions of physical memory. Up until the physical map is initialized, kernel bootstrap

code operates entirely in pre-allocated regions of memory.

The PMAP is initialized in the call to pmap_bootstrap(). Immediately prior to

the call to pmap_bootstrap(), the kernel bootstrap code reads from the FDT to

identify the full range of physical memory and provides it to the PMAP. This is important

because, from this point onward, the PMAP layer becomes responsible for keeping track

of available physical memory regions until UVM takes over. In addition to the full

physical memory range, kernel bootstrap code also passes information on pre-allocated

regions of memory, including the bootloader, the kernel image, and the FDT. Snippet 9

shows how the PMAP initializes itself to control the allocation of available memory

resources.

The kernel can begin to allocate memory once available regions are set up within the

PMAP layer. PMAP initialization continues by allocating memory to build the kernel
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// Example parameters for Physical Map Bootstrap in QEMU
// kvo = 0x4080000000
// l1pt = 0xffffffc000811000
// kernelstart = 0xffffffc000200000
// kernelend = 0xffffffc0008b5c28
// fdt_start = 0x80a00000
// fdt_end = 0x80a00eb5
// ram_start = 0x80000000
// ram_end = 0xa0000000
vaddr_t
pmap_bootstrap(long kvo, vaddr_t l1pt, vaddr_t kernelstart, vaddr_t kernelend,

paddr_t fdt_start, paddr_t fdt_end, paddr_t ram_start, paddr_t ram_end)
{

(...) // Variable declarations omitted for conciseness

pmap_setup_avail(ram_start, ram_end, kvo);

// Remove the Bootloader physical address range
printf("removing %lx-%lx\n", ram_start, kernelstart+kvo);
pmap_remove_avail(ram_start, kernelstart+kvo);

// Remove the Kernel Image physical address range
printf("removing %lx-%lx\n", kernelstart+kvo, kernelend+kvo);
pmap_remove_avail(kernelstart+kvo, kernelend+kvo);

// Remove the FDT physical address range
printf("removing %lx-%lx\n", fdt_start+kvo, fdt_end+kvo);
pmap_remove_avail(fdt_start, fdt_end);

(...) // Physical Map Bootstrap continues
}

Snippet 9. Early in the PMAP bootstrap process, the physical map stores the full extent of
system physical memory and removes regions that were pre-allocated to the bootloader,
kernel image, and FDT.

page table structures that will be managed by PMAP. The kernel page table structure

initially consists of an L1 page table, an L2 page table, and 512 L3 page tables with each

consuming 8 KiB of physical memory. The PMAP consumes 2 pages (8 KiB) per page

table rather than a single page (4 KiB) as required by the Sv39 translation mode. This is

because the PMAP layer also stores another 4 KiB (512 x 8 Bytes) of pointers for easier

traversal in software for page table management operations. After allocating physical

memory for the kernel page table, all previously allocated regions of memory regions are

populated into the page tables in a call to pmap_map_stolen(). The newly allocated

kernel page tables are fully managed by the physical map layer.
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At this point in PMAP initialization, the RISC-V MMU is still configured to use the

initial kernel page tables that were constructed earlier during kernel bootstrap. PMAP

bootstrap updates the satp register, which leads the MMU to switch from the initial

kernel page tables to the PMAP-managed page tables. The active physical map is also

stored to the CPU context as shown in Snippet 10. Upon returning from

pmap_bootstrap(), the kernel memory address space is fully managed by the

physical map layer of the OpenBSD memory subsystem.

vaddr_t
pmap_bootstrap(long kvo, vaddr_t l1pt, vaddr_t kernelstart, vaddr_t kernelend,

paddr_t fdt_start, paddr_t fdt_end, paddr_t ram_start, paddr_t ram_end)
{

(...) // Kernel PMAP is initialized

// Switch to new kernel page table
uint64_t satp = pmap_kernel()->pm_satp;
__asm __volatile("csrw satp, %0" :: "r" (satp) : "memory");

printf("all mapped\n");

// Store current pmap to CPU
curcpu()->ci_curpm = pmap_kernel();

return vstart;
}

Snippet 10. The Physical Map bootstrap process is finalized by configuring the RISC-V
MMU to perform translation based on the newly allocated, managed kernel page tables.

Later, once all machine-dependent bootstrapping has finished, the OpenBSD kernel

brings up the machine-independent layer of UVM. The machine-independent UVM layer

exposes system memory to the kernel at a higher-level abstraction to mask any

machine-specific memory management details within the kernel. The

machine-independent UVM layer delegates all modifications to in-memory page tables to

the machine-dependent PMAP layer. The PMAP exposes a number of operations to the

machine-independent UVM layer, allowing it to indirectly manage the RISC-V MMU.
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The machine-independent portion of the OpenBSD memory subsystem is not delved

into as it is identical across architectures. Instead, the page table management operations

provided by the machine-dependent physical map layer is focused on in this project.

5.4.3 Creating a Page Table

Once the memory subsystem is initialized, the life cycle of any new page table starts

with a call to pmap_create(). This call is typically executed as part of a call to

fork() either within the kernel or within a user process (via a syscall). The PMAP’s

responsibility during a call to pmap_create() is to create a new page table identical

in structure to the kernel page tables. The PMAP layer only deals with creating a bare

minimum clone of the kernel page table because PMAP does not have an understanding

of higher-level memory objects mapped into the page table by the machine-independent

layer. For this reason, PMAP alone cannot feasibly clone an entire page table without

potentially compromising address space isolation between the parent and child processes.

Therefore, PMAP is only responsible for mapping in the kernel address space.

pmap_t
pmap_create(void)
{

pmap_t pmap;
pmap = pool_get(&pmap_pmap_pool, PR_WAITOK | PR_ZERO);
mtx_init(&pmap->pm_mtx, IPL_VM);

pmap_pinit(pmap); ∂
if (pmap_vp_poolcache == 0) {

pool_setlowat(&pmap_vp_pool, 20);
pmap_vp_poolcache = 20;

}
return (pmap);

}

Snippet 11. Page tables are created by a call to pmap_create()

The call to pmap_create() allocates enough memory to hold an instance of the

page table management structure (pmap_t) which holds a pointer to the page table and
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other page table metadata. Initialization of the page table management structure is

delegated to pmap_pinit() as demonstrated by ∂ in Snippet 11.

Within pmap_pinit(), the top-level (L1) page table entry is allocated and PMAP

copies L1 page table entries for mapped regions in the kernel address space. For a 64-bit

HART in Sv39 mode, the mapped regions consist of the kernel image

(0xFFFFFFC000000000 – 0xFFFFFFC7FFFFFFFF ∑) and direct mapped region

(0xFFFFFFD000000000 – 0xFFFFFFFEFFFFFFFFF ∏) as shown in Snippet 12.

void
pmap_pinit(pmap_t pm)
{

struct pmapvp1 *vp1, *kvp1;
vaddr_t l1va;
uint64_t l1pa;

/* Allocate a full L1 table. */
while (pm->pm_vp.l1 == NULL) {

pm->pm_vp.l1 = pool_get(&pmap_vp_pool,
PR_WAITOK | PR_ZERO);

}

vp1 = pm->pm_vp.l1; /* top level is l1 */
l1va = (vaddr_t)vp1->l1;

// Fill Kernel Entries ∑
kvp1 = pmap_kernel()->pm_vp.l1;
memcpy(&vp1->l1[L1_KERN_BASE], &kvp1->l1[L1_KERN_BASE],

L1_KERN_ENTRIES * sizeof(pt_entry_t));
memcpy(&vp1->vp[L1_KERN_BASE], &kvp1->vp[L1_KERN_BASE],

L1_KERN_ENTRIES * sizeof(struct pmapvp2 *));

// Fill DMAP PTEs ∏
memcpy(&vp1->l1[L1_DMAP_BASE], &kvp1->l1[L1_DMAP_BASE],

L1_DMAP_ENTRIES * sizeof(pt_entry_t));
memcpy(&vp1->vp[L1_DMAP_BASE], &kvp1->vp[L1_DMAP_BASE],

L1_DMAP_ENTRIES * sizeof(struct pmapvp2 *));

pmap_extract(pmap_kernel(), l1va, (paddr_t *)&l1pa);
pmap_set_ppn(pm, l1pa);
pmap_set_mode(pm);
pmap_allocate_asid(pm);
pmap_reference(pm);

}

Snippet 12. The Physical Map allocates a new L1 page table and maps in the kernel image
and direct mapped regions of the kernel address space.
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PMAP uses the kernel page table to resolve the physical base address of the

newly-allocated top-level page table. This physical address is combined with the Sv39

translation mode identifier (0x8) and a newly allocated address space identifier (ASID) to

form a value that is written to the satp register when switching to the newly-allocated

page table.

PMAP returns the newly-created page table management structure to the

machine-independent layer of UVM. The newly-created page table is not yet activated on

a HART until it is attached to a process and explicitly activated as described in

Section 5.4.4.

5.4.4 Activating a Page Table

Activating a page table on a HART is achieved by calling the physical map’s

pmap_activate() function. This function accepts a process structure which provides

the PMAP layer with the page table management structure. This structure holds the page

table that describes the virtual address space for the target process. Changing the virtual

address space exposed by the RISC-V MMU is achieved by writing satp as shown by π

in Snippet 13.

void
pmap_activate(struct proc *p)
{

pmap_t pm = p->p_vmspace->vm_map.pmap;
int sie;

sie = disable_interrupts();
if (p == curproc && pm != curcpu()->ci_curpm)

pmap_set_satp(p); π
restore_interrupts(sie);

}

Snippet 13. Calling pmap_activate() switches to a new virtual address space.

The satp register is written in the call to pmap_set_satp(). The function uses

inline assembly to devise an instruction for writing satp, which is immediately followed
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by an address translation memory fence. Such a memory fence forces subsequent address

translations to reflect the new virtual address space. The new page table is also saved to

the current RISC-V HART state in software.

void
pmap_set_satp(struct proc *p)
{

struct cpu_info *ci = curcpu();
pmap_t pm = p->p_vmspace->vm_map.pmap;

__asm __volatile("csrw satp, %0" :: "r"(val));
__asm __volatile("sfence.vma");
ci->ci_curpm = pm;

}

Snippet 14. The pmap_set_satp() function writes satp to switch the virtual address
space and stores a pointer to the new page table management structure.

Note that updates to hardware and software state are not atomic during a virtual

address space transition. It is important that interrupts are disabled during this transition

to prevent the hardware and software from falling out of sync. Once execution returns to

the caller of pmap_activate(), the new page table is activated on the HART and the

kernel can later hand off control to the new process which will run in its own virtual

address space.

5.4.5 Updating a Page Table

The kernel isolates processes running on the system by providing them with separate

virtual address spaces and managing the permissions enforced on page table entries.

When a new page table is created by the PMAP layer, it only has kernel page table entries

mapped. The machine-independent UVM layer is responsible for mapping in user-mode

relevant regions of the virtual address space.

The machine-independent UVM layer needs to update its internal structures to map in

user-mode regions of the virtual address space. These regions are lazily-mapped into the

page table. Loading an executable into the virtual address space does not necessarily
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entail mapping the file into physical memory immediately. When a file is mapped into

memory, it is only reflected in the MI UVM layer. The page tables which are manipulated

by the PMAP layer are not yet updated. Later when the HART tries to fetch the first

instruction of this executable, a page fault is triggered, which leads UVM to load the page

into physical memory and insert it into the page tables via the PMAP layer.

The machine-independent UVM layer inserts mappings into physical memory by

making calls to the pmap_enter() function provided by the PMAP layer. This

function is responsible for initializing a new page table entry and inserting it into the page

table. To prevent concurrent updates from corrupting the page table, a lock on the page

table management structure must be held while the page table is being updated.

During page table entry initialization, the UVM layer provides the PMAP layer with a

set of permissions desired for the new virtual to physical address mapping. This

information is stored in the software descriptor for this page table entry by the

pmap_fill_pte() function, as shown in Snippet 15. The software descriptor for a

page table entry describes the permissions requested by the kernel memory subsystem.

The permissions written into the software descriptor may differ slightly from the

permissions enforceable by the underlying hardware. The translation between software

permissions and hardware permissions is handled during PTE insertion.

The PMAP layer will attempt to insert the page table entry into the in-memory page

table structure. A page table entry will be inserted if it is a wired mapping or has one of

the read, write, or execute permissions set on the page table entry descriptor. The

pmap_pte_insert() function as shown in Snippet 16 handles translating the

software page table entry descriptor into the in-memory page table format supported by

the underlying hardware.

The translation from software page table entry descriptor to the hardware-specific

page table entry format is delegated to the pmap_pte_update() function identified
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void
pmap_fill_pte(pmap_t pm, vaddr_t va, paddr_t pa, struct pte_desc *pted,

vm_prot_t prot, int flags, int cache)
{

pted->pted_va = va;
pted->pted_pmap = pm;

switch (cache) {
case PMAP_CACHE_WB:
case PMAP_CACHE_WT:
case PMAP_CACHE_CI:
case PMAP_CACHE_DEV:

break;
default:

panic("pmap_fill_pte:invalid cache mode");
}

pted->pted_va |= cache;
pted->pted_va |= prot & (PROT_READ|PROT_WRITE|PROT_EXEC);

if (flags & PMAP_WIRED) {
pted->pted_va |= PTED_VA_WIRED_M;
pm->pm_stats.wired_count++;

}

pted->pted_pte = pa & PTE_RPGN;
pted->pted_pte |= flags & (PROT_READ|PROT_WRITE|PROT_EXEC);

}

Snippet 15. The pmap_fill_pte() function initializes a page table entry descriptor
which describes the expected behavior and permissions requested by the memory
subsystem.

void
pmap_pte_insert(struct pte_desc *pted)
{

/* put entry into table */
pmap_t pm = pted->pted_pmap;
pt_entry_t *pl3;

if (pmap_vp_lookup(pm, pted->pted_va, &pl3) == NULL) {
panic("%s: have a pted, but missing a vp"

" for %lx va pmap %p", __func__, pted->pted_va, pm);
}

pmap_pte_update(pted, pl3); ∫
}

Snippet 16. The pmap_pte_insert() function takes a page table entry descriptor and
transforms it into the page table entry format supported by the hardware.
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by ∫ in Snippet 16. The implementation of this function is shown in Snippet 17. The

software permissions requested by the UVM layer are mapped to hardware-supported

permissions by ap_bits_kern ª and ap_bits_user º, which assign permissions

for kernel pages and user-mode pages, respectively.

void
pmap_pte_update(struct pte_desc *pted, uint64_t *pl3)
{

pt_entry_t pte, access_bits;
pmap_t pm = pted->pted_pmap;

if (pm->pm_privileged)
access_bits = ap_bits_kern[pted->pted_pte & PROT_MASK]; ª

else
access_bits = ap_bits_user[pted->pted_pte & PROT_MASK]; º

pte = VP_Lx(pted->pted_pte) | access_bits;
*pl3 = pte;

}

Snippet 17. The pmap_pte_update() function translates the permissions requested
by the UVM layer into permissions supported by the hardware.

As mentioned earlier, the software descriptor may describe a slightly different set of

permissions than what can be enforced by the hardware. The RISC-V architecture, for

example, does not support page table entries which are writable but not readable [13]. The

permissions set in hardware are either equivalent to, if supported, or less restrictive than

those permissions requested by the software. The translation between software

permissions and hardware permissions are shown in Snippet 18.

The hardware-supported permissions derived from either ap_bits_kern or

ap_bits_user are written into the in-memory page table. Ignoring any potential

memory ordering issues which could arise from updating active page tables, the page

table structure at this point will allow for successfully translating the virtual address va to

the kernel-assigned physical address pa. The PMAP layer returns control to the

machine-independent UVM layer following some cleanup work and unlocking the page
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// For RISC-V Machines, write without read permission is not a valid
// combination of permission bits. These cases are mapped to R+W instead.
// PROT_NONE grants read permissions because r = 0 | w = 0 | x = 0 is
// reserved for non-leaf page table entries.
const pt_entry_t ap_bits_kern[8] = {

[PROT_NONE] = PTE_A|PTE_R,
[PROT_READ] = PTE_A|PTE_R,
[PROT_WRITE] = PTE_A|PTE_R|PTE_W,
[PROT_WRITE|PROT_READ] = PTE_A|PTE_R|PTE_W,
[PROT_EXEC] = PTE_A|PTE_X,
[PROT_EXEC|PROT_READ] = PTE_A|PTE_X|PTE_R,
[PROT_EXEC|PROT_WRITE] = PTE_A|PTE_X|PTE_R|PTE_W,
[PROT_EXEC|PROT_WRITE|PROT_READ] = PTE_A|PTE_X|PTE_R|PTE_W,

};

const pt_entry_t ap_bits_user[8] = {
[PROT_NONE] = PTE_U|PTE_A|PTE_R,
[PROT_READ] = PTE_U|PTE_A|PTE_R,
[PROT_WRITE] = PTE_U|PTE_A|PTE_R|PTE_W,
[PROT_WRITE|PROT_READ] = PTE_U|PTE_A|PTE_R|PTE_W,
[PROT_EXEC] = PTE_U|PTE_A|PTE_X,
[PROT_EXEC|PROT_READ] = PTE_U|PTE_A|PTE_X|PTE_R,
[PROT_EXEC|PROT_WRITE] = PTE_U|PTE_A|PTE_X|PTE_R|PTE_W,
[PROT_EXEC|PROT_WRITE|PROT_READ] = PTE_U|PTE_A|PTE_X|PTE_R|PTE_W,

};

Snippet 18. Permissions required by software are translated to permissions supported by
the hardware by the ap_bits_kern and ap_bits_user structures.

table management structure. This process is repeated as many times as necessary to map

all user-mode pages into the page table structure.

5.5 Trap Subsystem Implementation

This section expands upon the overview of trap CSRs and trap entry/exit presented in

Section 4.4, providing further details into how traps are routed and handled within the

kernel.

5.5.1 Routing a Trap

As shown in Snippet 19, stvec is set to cpu_trap_handler, where all

interrupts and exceptions are first routed to. cpu_trap_handler further delivers the

trap to its specific handler.

The implementation of the cpu_trap_handler is shown in Snippet 20. The trap

handler uses the sscratch register to distinguish whether the trap originates from the

57



/* Set up supervisor trap vector */
la t0, cpu_trap_handler
csrw stvec, t0

Snippet 19. Assembly code to set up supervisor trap vector stvec.

kernel or a user-mode program. Based on the originating privilege mode, the trap is

forwarded to cpu_trap_handler_supervisor or cpu_trap_handler_user,

respectively. These two handlers are very similar to each other in their prologue and

epilogue, which encapsulates the privilege-mode-specific handlers, as shown in locations

Ω and æ of Snippet 21, respectively.

ENTRY(cpu_trap_handler)
csrrw sp, sscratch, sp
beqz sp, 1f
/* User-mode detected */
j cpu_trap_handler_user

1:
/* Supervisor-mode detected */
csrrw sp, sscratch, sp
j cpu_trap_handler_supervisor

END(cpu_trap_handler)

Snippet 20. Assembly code implementation of cpu_trap_handler.

ENTRY(cpu_trap_handler_supervisor)
save_registers 1
mv a0, sp
call _C_LABEL(do_trap_supervisor) Ω
load_registers 1
sret

END(cpu_trap_handler_supervisor)

ENTRY(cpu_trap_handler_user)
save_registers 0
mv a0, sp
call _C_LABEL(do_trap_user) æ
do_ast
restore_registers 0
csrrw sp, sscratch, sp
sret

END(cpu_trap_handler_user)

Snippet 21. Assembly code implementation of cpu_trap_handler_supervisor
and cpu_trap_handler_user.
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In Direct-mode, both do_trap_supervisor() and do_trap_user() must

read the interrupt bit of the scause register to determine whether the trap

originates from an interrupt or exception. The interrupt bit and the code bits of the

scause register uniquely identify the cause of a trap, as depicted in Table 2.

Taking do_trap_supervisor() as an example, the check-and-act logic is

implemented as shown in Snippet 22. All interrupts are routed to the generic interrupt

handler entry riscv_cpu_intr(), while all exceptions are routed to an appropriate

exception handler according to the specified exception cause, as depicted in Section 5.5.3.

void
do_trap_supervisor(struct trapframe *frame)
{

uint64_t exception;
...

if (frame->tf_scause & EXCP_INTR) {
/* Interrupt */
riscv_cpu_intr(frame);
return;

}
...

exception = (frame->tf_scause & EXCP_MASK);
switch(exception) {
case EXCP_FAULT_LOAD:
case EXCP_FAULT_STORE:
case EXCP_FAULT_FETCH:
case EXCP_STORE_PAGE_FAULT:
case EXCP_LOAD_PAGE_FAULT:

data_abort(frame, 0);
break;

case ...

}

Snippet 22. C code implementation for do_trap_supervisor().

5.5.2 Interrupt Handling

RISC-V defines three types of interrupts: software interrupt, timer interrupt, and

external interrupt. Software interrupts are used to perform Inter-Processor Interrupts (IPIs)

for communication between processors in a multi-processor system5. Timer interrupts are
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used by the HART to trigger regular interrupts for time-slicing which drives the kernel

scheduler. External interrupts are used to communicate with peripherals, such as UART

devices and PCI devices.

These interrupts are routed by a two-level nested interrupt controller architecture, as

demonstrated in Figure 19. This diagram illustrates a two-HART CPU system, where

each HART has a dedicated HART-Level Interrupt Controller (HLIC). The software

interrupts and timer interrupts are provided by a Core-Local Interrupter (CLINT)6and the

external interrupts are routed to HLIC via a Platform-Level Interrupt Controller (PLIC).

Fig. 19. A two-level nested interrupt controller architecture.

5.5.2.1 Core-Local Interrupter: CLINT serves as a simple CPU interrupter for

software interrupts and timer interrupts. The CLINT integrates the mtime and

mtimecmp CSRs to determine when to generate a timer interrupt. CLINT also integrates

the msip CSR which is used for software interrupts. These three CSRs are listed below:

5. This port of OpenBSD for RISC-V does not yet support multi-processor systems, therefore this feature is currently
unimplemented and is reserved as a future work.

6. The terminology Core-Local Interrupter is inherited from SiFive [16]. Despite what the name might imply, CLINT
is shared among all HARTs as depicted in Figure 19.
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• mtime: machine-mode timer register, which is expected to be implemented as an

real-time clock device [2]. This clock runs at a constant frequency. There is only one

mtime across the platform, even for a multi-HART system.

• mtimecmp: machine-mode timer compare register, which signals when to trigger a

timer interrupt. A timer interrupt is generated when mtime becomes greater than or

equal to mtimecmp. Each HART has its own dedicated mtimecmp.

• msip: machine-mode software interrupt pending register, which is used to send a

software interrupt to a HART. Each HART has its own dedicated msip so that

HART-A can write to HART-B’s msip for inter-HART communication.

Specific to the QEMU ‘virt’ board, CLINT’s FDT definition is shown in Snippet 24.

The interrupts-extend field should be interpreted as: CLINT extends interrupt

0x00000003 (machine-mode software interrupt) of interrupt controller whose

phandle equals 0x00000002 (the HLIC). Similarly, CLINT also extends interrupt

0x00000007 (machine-mode timer interrupt) of the same HLIC.

soc {
...
clint@2000000 {

interrupts-extended = <0x00000002 0x00000003 0x00000002 0x00000007>;
reg = <0x00000000 0x02000000 0x00000000 0x00010000>;
compatible = "riscv,clint0";

};

Snippet 23. CLINT definition in FDT

The software interrupt and timer interrupt mechanisms provided by CLINT are

exposed as machine-mode operations. These machine-mode mechanisms are filtered out

from the FDT by BBL thus they are invisible to the OS kernel. Supervisor-mode does

expose a time register which mirrors the behavior of the machine-mode mtime register.

Reads to the supervisor-mode time register are intercepted and emulated by BBL, by

performing the I/O to retrieve time value from CLINT’s mtime [2]. The mtimecmp and

msip registers do not have supervisor-mode counterparts and are instead exposed via SBI
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functions. The sbi_set_timer() SBI function allows the OS kernel to set a new

value to mtimecmp to configure the timer interrupt. Similarly, the sbi_send_ipi()

and sbi_clear_ipi() SBI functions allow the OS kernel to manipulate the msip

register to send and receive software interrupts from other HARTs.

5.5.2.2 Platform-Level Interrupt Controller: The PLIC provides a flexible

system-level mechanism for dispatching global external interrupts to one or more

“contexts” within the system [16]. The term “context” used here is different from that in

Process Subsystem Implementation (Section 5.6). Within this section, a “context” refers

to a HART under a specific privilege mode. Each global interrupt has a dedicated

interrupt identifier and arrives at a HART through a single interrupt connection. The PLIC

provides memory-mapped registers to program the priority for each external interrupt

source, to program the priority threshold for each context, to control the connectivity of

each interrupt-to-context pair, and to claim/complete an interrupt.

• PLIC ID: Each distinct interrupt source is assigned a unique identifier. PLIC

supports up to 1024 interrupt sources, where interrupt ID 1 is tied to

global_interrupt[0], which means “no interrupt”. This makes the first

usable PLIC ID 2. PLIC ID is independent of the interrupt IDs as presented in

scause for the core-local interrupt handler.

• PLIC Priorities: Each distinct interrupt source has a configurable priority level.

QEMU emulates the SiFive implementation of the PLIC which supports priority

values from 0 through 7, inclusively. The value ‘0’ is the lowest priority and disables

the interrupt source. Ties on priority are resolved by PLIC ID (lower PLIC ID wins).

• PLIC Threshold: Each context has a configurable priority threshold. The priority

threshold is used to mask all interrupts with priority less than or equal to the

specified threshold. Only interrupts with priority higher than the threshold are

propagated to the HART.
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• PLIC Connectivity: Connectivity between each pair of interrupt source and context

is configurable. This register provides fine-grained control over where interrupt

sources are routed.

PLIC extends both machine-mode and supervisor-mode external interrupts of HLIC.

The OS kernel can receive supervisor-mode external interrupts from PLIC directly. To

handle an external interrupt, a HART should read the claim register to acquire the PLIC

ID. A successful claim atomically clears the pending bit in the PLIC interrupt pending

register, signaling that the interrupt is being serviced [16]. Before the interrupt handler is

finished and the claim register is written back, the PLIC cannot forward a new interrupt

to the same HART. This means PLIC does not support preemption of global interrupts to

an individual HART. The details to handle an external interrupt is described in

paragraph 5.5.2.5. How PLIC is configured and attached is depicted in Section 5.7.7.

5.5.2.3 HART-Level Interrupt Controller: The essential software data structure

in OS kernel for this HLIC is the handlers vector, struct intrhand*

intc_handler[INTC_NIRQS], which is referenced to route an interrupt to the

correct handling entry point. For the OpenBSD kernel running in supervisor-mode, at

least three handlers should be populated into this vector via a call to

riscv_intc_intr_establish().

• IRQ_SOFTWARE_SUPERVISOR.

• IRQ_TIMER_SUPERVISOR.

• IRQ_EXTERNAL_SUPERVISOR.

When an interrupt happens, riscv_intc_irq_handler() checks the irqno

and uses this to index into the handlers vector and invoke the appropriate handler.

How this interrupt controller is configured and attached is depicted in Section 5.7.5.

5.5.2.4 Timer Interrupt Handling: The configuration and initialization of the

timer device is depicted in Section 5.7.4. During
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riscv_timer_cpu_initclocks(), the timer establishes its interrupt handler

riscv_timer_intr to the corresponding entry of the HLIC’s handlers vector:

intc_handler[IRQ_TIMER_SUPERVISOR]. Later, when a timer interrupt is

routed to the HART as demonstrated in Section 5.5.1, riscv_timer_intr() is

called to:

• Calculate the time for the next timer interrupt.

• Write the next interrupt time to mtimecmp via SBI function sbi_set_timer().

• Clear the supervisor timer interrupt pending bit (sip.STIP).

• Return ‘1’ to indicate interrupt has been successfully handled.

Normally the timer interrupt frequency is set to 100Hz. This periodic interrupt is used

in process scheduling, as described in Section 5.6.

5.5.2.5 External Interrupts Handling: The core data structure maintained for the

PLIC is the external interrupt handlers vector struct plic_irqsrc *sc_isrcs

as embedded in plic_softc. Each plic_irqsrc corresponds to one external

interrupt source, but each interrupt could have multiple handlers (struct

plic_intrhand). This could be because different HARTs have different handling

procedures for the same interrupt.

Each device that reports interrupts to the PLIC should establish an interrupt handler

with sc_isrcs, by a call to plic_intr_establish_fdt(). Later, when an

external interrupt occurs, the pre-established handler will be called from

plic_irq_handler(). Within this handler, a HART first reads the claim register

of PLIC to obtain the pending interrupt ID. The HART then uses the interrupt ID to index

into the PLIC handlers vector to invoke the corresponding handler. Once the handler is

returned, the HART writes the interrupt ID back to the claim register, indicating the

interrupt handling has been completed.
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The OpenBSD kernel maintains a global System Priority Level SPL to block

interrupts with priority less than or equal to the named level. SPL is enforced to PLIC’s

threshold register in plic_setipl(). Upon entry into an external interrupt’s handler (

plic_irq_dispatch()), the OS kernel should first raise SPL to prevent this handler

from being preempted by interrupts with lower or equal priority. The SPL value will be

restored upon the exit from this handler.

5.5.3 Exception Handling

Exceptions arise as a direct consequence of an instruction executing on a RISC-V

HART. For example, an exception will occur for the illegal instruction defined as 16

consecutive zero bits (0x0000). The majority of the defined exception types, as shown in

Table 3, arise from faults related to memory access.

Table 3
Summary of RISC-V Supervisor-Mode Exception Types

Code Description
0 Instruction address misaligned
1 Instruction access fault
2 Illegal instruction
3 Breakpoint
4 Load address misaligned
5 Load access fault
6 Store / AMO address misaligned
7 Store / AMO access fault
8 Environment call from U-mode
9 Environment call from S-mode

10-11 Reserved
12 Instruction page fault
13 Load page fault
14 Reserved for future standard use
15 Store / AMO page fault

�16 Reserved

The exception types defined in Table 3 can be divided into two categories: exceptions

arising from instruction faults and exceptions arising from memory faults.
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5.5.3.1 Instruction Faults: Instruction faults consist of exceptions which arise as

a direct result of executing an instruction excluding all memory access and alignment

related faults. Of those exception types defined in Table 3, instruction faults include:

illegal instruction, breakpoint, environment call from U-mode, and environment call from

S-mode. These exception types arise due to issues unrelated to memory access and may

instruct the kernel to take some explicit actions to remediate the fault.

The illegal instruction exception can arise from execution of the defined illegal

instruction (0x0000) or from execution of instructions that are not supported by the

hardware implementation. For example, an illegal instruction exception will occur when

executing a floating point instruction on a RISC-V platform which does not implement

the floating point ISA extension. A kernel trap handler could be instrumented to emulate

instructions that are not provided by the underlying hardware, if desired, or might simply

signal to terminate the offending process if there is no remediation for the faulting

instruction. Within the OpenBSD kernel, the response to this type of exceptions depends

on the context from which the exception arises. Illegal instructions encountered from the

kernel context will cause a kernel panic, whereas illegal instructions encountered from a

user-mode context will trigger an illegal instruction signal (SIGILL) to be issued to the

offending process.

The breakpoint exception type occurs as a direct consequence of executing an

environment breakpoint instruction (EBREAK) during program execution. This instruction

is intended to be used by debuggers to insert hardware breakpoints to regain control of the

RISC-V HART when the program reaches a certain point in the sequence of instructions.

Similar to the illegal instruction exception type, the OpenBSD kernel’s reaction to this

type of exceptions depends on the context from which it is received. The OpenBSD

kernel features a built-in kernel debugger (DDB) which handles breakpoints encountered
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in the kernel context. Breakpoints encountered from user-mode contexts trigger a trap

signal (SIGTRAP) to be issued to the offending process.

The remaining instruction-fault exceptions are environment call arising as a direct

result of an environment call (ECALL) instruction from different source contexts. Within

the context of the OpenBSD kernel trap handler, the environment call from U-mode is the

only expected type of environment call exception. These exceptions are used by

user-mode processes to issue system calls to the OpenBSD kernel. The kernel trap handler

delegates system calls to the machine-dependent syscall handler (svc_handler())

whose implementation is partially shown in Snippet 24.

The machine-dependent syscall handler looks into the registers saved in the

trapframe of the active process. As shown by ø in Snippet 24, the user-mode program

stores the unique system call code in register t0, which the system call handler uses to

identify the requested operation. The user-mode process may also pass one or more

arguments as required by the system call in the argument registers. The

machine-dependent system call handler takes responsibility to copy system call arguments

from the user-mode process address space into the kernel address space ¿ before

delegating it to the machine-independent system call handler ¡.

5.5.3.2 Memory Faults: Memory faults are defined as those arising as a result of

a memory-related operation. This includes all exception codes listed in Table 3 that are

not already covered in Instruction Faults. The memory fault exceptions can be broken

down further into three subcategories: Memory Alignment Faults, Memory Page Faults,

and Memory Access Faults.

Memory alignment faults occur when an address is misaligned. For example, the

program counter must be 2-byte aligned for instruction fetch on RISC-V implementations

that support the compressed instruction format or 4-byte aligned on RISC-V
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void
svc_handler(trapframe_t *frame)
{

(...) // Variable declarations

ap = &frame->tf_a[0]; // Pointer to first arg
code = frame->tf_t[0]; ø // Syscall code
callp = p->p_p->ps_emul->e_sysent;

(...) // Syscall bounds check & lookup

nargs = callp->sy_argsize / sizeof(register_t);
if (nargs <= nap) {

args = ap;
} else {

KASSERT(nargs <= MAXARGS);
memcpy(copyargs, ap, nap * sizeof(register_t));
if ((error = copyin((void *)frame->tf_sp, copyargs + nap,

(nargs - nap) * sizeof(register_t)))) ¿
goto bad;

args = copyargs;
}

rval[0] = 0;
rval[1] = frame->tf_a[1];

error = mi_syscall(p, code, callp, args, rval); ¡

switch (error) {
case 0:

frame->tf_a[0] = rval[0];
frame->tf_a[1] = rval[1];
frame->tf_t[0] = 0; /* syscall succeeded */
break;

case ERESTART:
frame->tf_sepc -= 4; /* prev instruction */
break;

case EJUSTRETURN:
break;

default:
bad:

frame->tf_a[0] = error;
frame->tf_t[0] = 1; /* syscall error */
break;

}

mi_syscall_return(p, code, error, rval);
}

Snippet 24. The svc_handler() function handles the machine-dependent aspect of a
system call before delegating it to the machine-independent system call handler.
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implementations which do not support the compressed instruction format. Loads, stores,

and atomic memory operations must be aligned to an appropriate byte boundary.

Memory page faults occur when a memory address translation fails due to a missing

or otherwise invalid virtual to physical address mapping. Specifically, when a virtual to

physical address mapping has not been cached in the Translation Lookaside Buffer (TLB),

the RISC-V hardware page table walker will traverse the in-memory page table structure

following the procedure outlined in Section 4.3. If the virtual to physical address mapping

is missing or otherwise invalid, a page fault is thrown based on the memory access type.

Memory access faults occur when a memory access fails a Physical Memory

Permissions check following virtual to physical address translation. Each virtual to

physical address mapping stored in the page table is assigned PMP bits, which determine

whether the memory is readable, writable, and executable. Attempting to access a

memory page with permissions not granted by the page table entry will cause a memory

access fault.

The kernel trap handler delegates recoverable memory faults to the UVM memory

subsystem by a call to data_abort() function. The data_abort(), as partially

represented in Snippet 25, uses the scause register to resolve the access type ¬ and

relays this information to UVM. The machine-dependent PMAP layer is given a chance to

resolve any delayed mappings which may not yet be reflected in the in-memory page

tables. If the PMAP layer is unable to resolve the mapping, the fault is instead issued to

the machine-independent UVM layer √. UVM reads the virtual address space and may

insert the virtual to physical address mapping into the page table.

5.6 Process Subsystem Implementation

The process subsystem manages all processes within the operating system. An

instance of the process structure holds on to the state of the relevant hardware. When a

process is context switched onto a HART, the state of general purpose registers is restored

69



static void
data_abort(struct trapframe *frame, int usermode)
{

(...) // Variable declarations

if ((frame->tf_scause == EXCP_FAULT_STORE) ||
(frame->tf_scause == EXCP_STORE_PAGE_FAULT)) {

access_type = PROT_WRITE; ¬
} else if ((frame->tf_scasue == EXCP_FAULT_FETCH) ||

(frame->tf_scause == EXCP_INST_PAGE_FAULT)) {
access_type = PROT_EXEC;

} else {
access_type = PROT_READ;

}

(...) // Resolve UVM VM Map for fault context

if (pmap_fault_fixup(map->pmap, va, ftype, usermode))
goto done;

KERNEL_LOCK();
error = uvm_fault(map, va, ftype, access_type); √
KERNEL_UNLOCK();

(...) // Cleanup & Error Handling
}

Snippet 25. The data_abort() function resolves the fault type based on the process
state held in trapframe and delegates these faults to the OpenBSD memory subsystem.

from the previous state of the process. This saved state is a snapshot of the process’s

execution at the moment when it was switched out of a HART. The context switch aspect

of process management is described in more detail in Section 5.6.2.

The OpenBSD process subsystem also includes a CPU scheduler which is responsible

for deciding which of the active processes can be assigned to an idle HART. The CPU

scheduler leverages the RISC-V’s hardware timer to regain control of the HART from

processes that do not yield before the periodical timer interrupt arrives. Timer interrupt

handling is described in Section 5.5.

Kernel bootstrapping code manually constructs a process context for itself to become

process 0 as part of system initialization. This manual process construction is only
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utilized for process 0, as all other processes are spawned by a call to one of the variants of

fork().

5.6.1 Process Fork

With exception of the root process (process 0), all processes are spawned from a

parent process via a call to fork(). The root process is the only process that does not

have a parent process. Instead, it is the root of the process tree. All other processes are

attached to the root process through some chain of parent processes. An example of the

process hierarchy is shown in Figure 20.

Fig. 20. Example of process hierarchy in a UNIX-like system.

When a process is forked from its parent, the child is spawned as a near-identical

duplicate of the parent process. The kernel is responsible for carrying over all process

state into the new process and creating a clone of the virtual address space of the parent

process. The virtual address space clone is delegated to UVM. UVM’s

machine-dependent PMAP layer is responsible for cloning the kernel page table entries

while UVM’s machine-independent layer is responsible for persisting all other memory

objects into the new virtual address space.
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The forked child process is added to the CPU scheduler and the fork() call returns

the child process identifier to the parent process. For kernel process forks, the parent

process in the kernel controls the entry point of the new kernel process. For normal

user-mode process forks, the new process returns to user-mode at the instruction

immediately following the fork() system call in the parent process. The new child

process sits in the process list until it is selected by the kernel scheduler to run either on

the current HART or another HART in a multi-processor system.

5.6.2 Context Switch

The OpenBSD process subsystem perform a context switch to swap between different

active processes running on the system. Context switches can happen for a number of

reasons. For example, a process attempts to read from a hard disk and gets stuck waiting

for the disk to return the requested data. Instead of allowing the HART to sit idly waiting

on blocking I/O, the system call to read from disk may also trigger a context switch to

assign another process to the HART.

A context switch starts by storing the execution state of the active process before

switching to a new process. The active process’s execution state is already mostly saved

by the supervisor trap handler upon entry into kernel. A trap handler may signal to the

kernel scheduler to yield the HART to another process depending on the circumstances.

The machine-independent scheduler code delegates to cpu_switchto() to perform

the machine-dependent aspects of the context switch. The machine-dependent context

switch begins by saving the kernel execution state into a switchframe, as shown in

Snippet 26. This step may be skipped in certain scenarios where the kernel does not care

about the old process state, such as when a process is terminating.

Note that in the block of assembly identified by ƒ, the switchframe only stores

callee-saved registers as the caller to cpu_switchto() has already saved important

temporary registers to the stack, as required by RISC-V calling conventions. The
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/*
* cpu_switchto(struct proc *oldproc, struct proc *newproc)
* a0 ’struct proc *’ of the old context
* a1 ’struct proc *’ of the new context
*/

ENTRY(cpu_switchto)
// check if old context needs to be saved
beqz a0, 1f

// create switchframe ƒ
addi sp, sp, -SWITCHFRAME_SIZEOF
sd s0, (SF_S + 0 * 8)(sp)
sd s1, (SF_S + 1 * 8)(sp)
sd s2, (SF_S + 2 * 8)(sp)
sd s3, (SF_S + 3 * 8)(sp)
sd s4, (SF_S + 4 * 8)(sp)
sd s5, (SF_S + 5 * 8)(sp)
sd s6, (SF_S + 6 * 8)(sp)
sd s7, (SF_S + 7 * 8)(sp)
sd s8, (SF_S + 8 * 8)(sp)
sd s9, (SF_S + 9 * 8)(sp)
sd s10, (SF_S + 10 * 8)(sp)
sd s11, (SF_S + 11 * 8)(sp)
sd ra, SF_RA(sp)

// store switchframe
ld a5, CI_CURPCB(tp)
sd sp, PCB_SP(a5)

...
END(cpu_switchto)

Snippet 26. The machine-dependent context switch function begins by saving the kernel
execution state related to the active process.

switchframe is stored on the kernel stack and the proc and cpu_info structures

are updated before switching to the new virtual address space of the target process, as

shown in Snippet 27.

The new process’ stack pointer is stored in a saved register so that it persists across

the transition to the new virtual address space, which is implemented via the call to

pmap_set_satp(). Immediately following the switch, the new process’ stack pointer

is restored to the sp register, so that the switchframe of the target process’ kernel

state can be restored from the target process’ kernel stack. The registers are restored to the

HART and the execution returns to the caller.
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ENTRY(cpu_switchto)
...

li a5, SONPROC
sb a5, P_STAT(a1) // Mark new on cpu
sd tp, P_CPU(a1) // Store curcpu
ld a5, P_ADDR(a1) // Load new pcb
sd a5, CI_CURPCB(tp)
sd a1, CI_CURPROC(tp)

ld s1, PCB_SP(a5) // load new stack pointer
mv a0, a1
la t0, pmap_set_satp
jalr t0

mv a7, s0 // move retguard random
mv sp, s1 // restore stack pointer

...
END(cpu_switchto)

Snippet 27. The machine-dependent context switch function updates the proc and
cpu_info structures and switches to the virtual address space of the target process.

5.7 Device Subsystem Implementation

With the autoconf framework as presented in Section 4.6, all devices are attached

in a tree hierarchy as illustrated in Figure 15. This section elaborates on the

machine-dependent devices identified in this device hierarchy. Device definition and

configuration are separated into Appendix A.

5.7.1 Mainbus

mainbus0 is the root of the FDT. It is the starting point of the autoconf

procedure. mainbus0 is defined in Snippet 37 at location ≈ in Appendix A, where an

attribute named mainbus is defined such that all its children devices can attach to this

attribute. mainbus0’s parent is a virtual attribute root, which is introduced to simplify

device configuration.

With this definition, mainbus0 can be configured as in Snippet 38 at location « in

Appendix A.
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The device definition and configuration is synthesized by config(8) to generate a

descriptor in ioconf.c. This “machine descriptor” file drives the autoconf matching and

attaching procedure. The key data structure in ioconf.c is struct cfdata

cfdata[], which stores the descriptors for multiple devices, as shown in Snippet 39 in

Appendix A. For example, the cfdata entry for mainbus0 (at location » in

Snippet 39) provides:

• mainbus0’s attachment-relevant data structures in mainbus_ca.

• mainbus0’s driver-relevant data structures in mainbus_cd.

• mainbus0’s parent as pv+3, which equals to -1 (root).

• mainbus0’s unit number starting from 0.

The call stack leading to mainbus0’s configuration is main() !

cpu_configure() ! config_rootfound("mainbus", NULL). The

config_rootfound() will call mainbus_match() then mainbus_attach().

mainbus_match() always returns ‘1’, which means mainbus0 will always be

attached, as it handles both FDT and non-FDT machines. mainbus_attach() mainly

completes the following tasks:

1) Call riscv_intr_init_fdt() to initialize all interrupt controllers. This

function discovers all interrupt controllers by iterating the FDT in a depth-first

manner and matching the property ‘interrupt-controller’ of each node. It

then allocates memory for each newly-discovered interrupt controller and inserts it to

the global interrupt controllers list.

2) Call riscv_timer_init() to attach riscv_timer_delay() to the generic

stub riscv_clock_func.delay. This provides a dummy delay method before

timer is attached.

3) Call mainbus_attach_cpus() to attach the primary CPU, as detailed in

Section 5.7.3.
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4) Iterate through each child of mainbus0 and call mainbus_attach_node() to

attach nodes with locator early=1 followed by nodes with locator early=0.

5) Call mainbus_attach_framebuffer() to attach frame buffer.

6) Call mainbus_attach_cpus() to attach secondary CPUs.

mainbus_attach_node() first constructs the fdt_attach_args by pulling

properties from FDT for the given node. It then passes this fdt_attach_args to

config_found_sm() as the aux argument so that this child device can be attached

in direct configuration mode.

5.7.2 UART

The UART device is presented to kernel via FDT, as defined in Snippet 28. The FDT

specifies that com0 has a baud rate of 0x384000 and com0 reports interrupt (with

irqno=0x0000000a) to PLIC (whose phandle=0x00000003).

uart@10000000 {
interrupts = <0x0000000a>;
interrupt-parent = <0x00000003>;
clock-frequency = <0x00384000>;
reg = <0x00000000 0x10000000 0x00000000 0x00000100>;
compatible = "ns16550a";

};

Snippet 28. com0 definition in FDT

com0 is initialized even before autoconf starts. This early initialization enables

printf during kernel bootstrap. printf prints one character to the console via the call

stack illustrated in Figure 21. The call stack can be divided into two layers, MI layer and

MD layer. The key connection between MI and MD components is cn_tab, which is

hooked to com_fdt_cons in the early initialization routine

com_fdt_init_cons(). This routine maps com0 to the virtual address space so that

it can be accessed as an MMIO device via generic_space_read/write_1().
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Fig. 21. The MI-MD interface for printf.

Different from other MD devices as defined in files.riscv64, the com0 device is

defined in ‘/sys/conf/files’:

device com: tty
file dev/ic/com.c com & (com | com_cardbus | com_gsc |

com_isapnp) needs-flag

com0 is attached to attribute [fdt] as com_fdt in ‘/sys/dev/fdt/files.fdt’:

attach com at fdt with com_fdt
file dev/fdt/com_fdt.c com_fdt

files.riscv64 includes files.fdt as shown in Snippet 37. With these definitions, com0

can be configured as shown in Snippet 38. The resultant device descriptor for com0 is

given in Snippet 39.
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com0 is formally attached as a child node of mainbus0 in direct configuration

mode during mainbus_attach().

com_fdt_match() simply checks whether the given aux’s node is compatible

with ns16550a while com_fdt_attach() tackles the following tasks:

1) Enable clock if the UART device has an embedded clock.

2) Obtain clock-frequency.

3) Populate the com_softc data structure.

4) Map com0 to virtual address space via bus_space_map().

5) Call com_attach_subr() to configure com0.

6) Establish the connection of com0’s interrupt handler to plic0 via

fdt_intr_establish().

5.7.3 HART

cpu0 is the primary HART, which is selected to boot the kernel.

A HART is defined in FDT as shown in Snippet 29. The HART ID is stored in reg

field. The supported ISA set is stored in the “riscv,isa” field. The

timebase-frequency field gives the real-time clock frequency (10MHz). This

property is used to match timer0.

CPU’s device definition is given in Snippet 37. cpu0’s configuration is listed in

Snippet 38. The resultant device descriptor of cpu0 is presented in Snippet 39. Driven by

this descriptor, following what was described in Section 5.7.1,

mainbus_attach_cpus() first identifies the ‘/cpus’ node in FDT, then calls

mainbus_attach_node() for each child node of ‘/cpus’.

mainbus_attach_cpus() accepts a cfmatch_t-type argument: match. The two

cfmatch_t functions assigned to mainbus_match_primary() and

mainbus_match_secondary() distinguishes the primary and secondary HARTs by

calling the matched cfdata’s cpu_match() function.
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cpus {
#address-cells = <0x00000001>;
#size-cells = <0x00000000>;
timebase-frequency = <0x00989680>;
cpu-map {

cluster0 {
core0 {

cpu = <0x00000001>;
};

};
};
cpu@0 {

phandle = <0x00000001>;
device_type = "cpu";
reg = <0x00000000>;
status = "okay";
compatible = "riscv";
riscv,isa = "rv64imafdcsu";
mmu-type = "riscv,sv48";
interrupt-controller {

...
};

};
};

Snippet 29. HART definition in FDT

For primary HART, cpu_match() returns true only if its HART ID equals

boot_hart, which is saved during kernel bootstrap, as shown in Snippet 30.

la t0, boot_hart //the HART kernel boots on.
sw a0, 0(t0) //all above logic runs on this a0 HART.

Snippet 30. The boot HART ID is saved to boot_hart during kernel bootstrap in
locore.S.

For secondary HART, cpu_match() returns true only if the total number of

discovered HARTs (excluding the one that is under discovery), ncpus, is smaller than

MAXCPUS. This logic is shown in Snippet 31.

cpu_attach() handles the following tasks:

1) Allocate memory for cpu_info (Snippet 32), which maintains the management

information for a HART. If current HART is the boot_hart, it will instead use the

pre-allocated cpu_info_primary directly. Otherwise, a cpu_info structure is
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int
cpu_match(struct device *parent, void *cfdata, void *aux)
{

...
if (ncpus < MAXCPUS || faa->fa_reg[0].addr == boot_hart) /* the primary cpu

,! */
return 1;

}

Snippet 31. CPU match function key logic as implemented incpu.c.

allocated for the newly-discovered HART. All HART’s cpu_info are organized in

cpu_info_list.

2) Update the following fields of struct cpu_info *ci:

• ci->ci_dev, which points to the device data structure for this HART and

which is allocated and initialized during call stack

config_attach()!config_make_softc().

• ci->ci_cpuid, which equals dev->dv_unit. This is the instance index of

CPU’s driver but not the HART ID.

• ci->ci_node, which equals the HART node index in FDT.

• ci->self, which points to this cpu_info itself.

3) Call cpu_identify() to identify the HART’s vendor, part number and supported

ISA set.

4) Attach current HART’s child devices, e.g., timer0 and intc0. Section 5.7.4 and

Section 5.7.5 discuss these two child devices in greater detail.

5.7.4 Timer

The definition of device timer0 is presented in Snippet 37. Its configuration in the

GENERIC file is listed in Snippet 38. The resultant device descriptor of timer0 in

ioconf.c is given in Snippet 39. Driven by this file, attaching timer0 happens inside

cpu_attach(), with a call to config_found_sm().
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struct cpu_info {
struct device *ci_dev; /* Device corresponding to this CPU */
struct cpu_info *ci_next;
struct schedstate_percpu ci_schedstate; /* scheduler state */

u_int32_t ci_cpuid;
int ci_node;
struct cpu_info *ci_self;

struct proc *ci_curproc;
struct pmap *ci_curpm;
u_int32_t ci_randseed;

struct pcb *ci_curpcb;
struct pcb *ci_idle_pcb;

u_int32_t ci_ctrl; /* The CPU control register */

uint32_t ci_cpl;
uint32_t ci_ipending;
uint32_t ci_idepth;

#ifdef DIAGNOSTIC
int ci_mutex_level;

#endif
int ci_want_resched;

#ifdef MULTIPROCESSOR
struct srp_hazard ci_srp_hazards[SRP_HAZARD_NUM];
volatile int ci_flags;
volatile int ci_ddb_paused;

#define CI_DDB_RUNNING 0
#define CI_DDB_SHOULDSTOP 1
#define CI_DDB_STOPPED 2
#define CI_DDB_ENTERDDB 3
#define CI_DDB_INDDB 4

#endif

#ifdef GPROF
struct gmonparam *ci_gmon;

#endif
};

Snippet 32. cpu_info data structure definition in cpu.h.

riscv_timer_match() will return 1 if timer0 has not been attached yet and

the /cpus node in the FDT has a timebase-frequency property.

riscv_timer_attach() is called from config_attach() following

allocation of riscv_timer_softc for timer0. riscv_timer_attach() first

obtains the real-time clock frequency and stores it in riscv_timer_softc. It then
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calls riscv_clock_register() to hook

riscv_timer_cpu_initclocks(), riscv_timer_delay() and

riscv_timer_startclock() to the generic stubs in riscv_clock_func.

riscv_timer_cpu_initclocks() is called from call stack

main()!initclocks()!cpu_initclocks() and it needs to handle the

following tasks:

1) Update sc_ticks_per_intr in riscv_timer_softc.

2) Establish timer interrupt handler to HLIC’s handlers vector.

3) Calculate the time when the first timer interrupt should happen and set this value to

mtimecmp via sbi_set_timer().

4) Enable timer interrupt by setting sie.STIE field.

riscv_timer_startclock() is called from cpu_start_secondary()!

cpu_startclock() to start timer interrupt for secondary HARTs by performing only

the last two tasks listed above.

riscv_timer_delay() provides two delay mechanisms:

• If timer0 has not been attached, delay with a dummy nested for-loop.

• If timer0 is attached, use this timer to count the total delay cycles.

5.7.5 HART-Level Interrupt Controller

The functional feature of HLIC has been demonstrated in paragraph 5.5.2.3. This

subsection mainly focuses on how intc0 is defined, probed and configured.

The HLIC is presented to kernel via FDT as a sub-device of HART cpu0. Snippet 33

demonstrates a partial FDT with two HARTs, where each HART has a dedicated HLIC

distinguished by phandle.

The definition of intc0 is presented in Snippet 37. intc0’s configuration in

GENERIC is included in Snippet 38. The resultant device descriptor of intc0 in ioconf.c

is presented in Snippet 39. Driven by this file, intc0 is attached during
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cpus {
...
cpu@0 {

...
interrupt-controller {

#interrupt-cells = <0x00000001>;
interrupt-controller;
compatible = "riscv,cpu-intc";
phandle = <0x00000004>;

};
};
cpu@1 {

...
interrupt-controller {

#interrupt-cells = <0x00000001>;
interrupt-controller;
compatible = "riscv,cpu-intc";
phandle = <0x00000002>;

};
};

};

Snippet 33. HART-Level Interrupt Controller definition in FDT

cpu_attach() via a call to config_found(). The aux stores intc0’s node

index in FDT, which implies intc0 is attached in direct-config mode.

riscv_intc_match() returns 1 if the given node has property

interrupt-controller and is compatible with “riscv,cpu-intc”.

riscv_intc_attach() firstly needs to hook the HART-specific interrupt handler

riscv_intc_irq_handler to the generic stub riscv_cpu_intr via

riscv_set_intr_handler(). After this establishment, an interrupt can trap to a

HART via the following step: stvec ! cpu_trap_handler() !

cpu_trap_handler_supervisor() ! do_trap_supervisor() !

riscv_cpu_intr() ! riscv_intc_irq_handler().

riscv_intc_attach secondly needs to register itself to the global interrupt

controllers list via a call to riscv_intr_register_fdt().
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5.7.6 Simplebus

The SoC (system on a chip) device in FDT (as shown in Snippet 34) is abstracted to

simplebus0. It is the parent of PCI devices, PLIC, and CLINT.

soc {
#address-cells = <0x00000002>;
#size-cells = <0x00000002>;
compatible = "simple-bus";
ranges;
pci@30000000 {

...
};
interrupt-controller@c000000 {

...
};
clint@2000000 {

...
};

};

Snippet 34. simplebus0 definition in FDT

The definition of simplebus0 is shown in Snippet 37. The configuration of

simplebus0 is given in Snippet 38. The device descriptor for simplebus0 is shown

in Snippet 39.

The call stack to attach simplebus0 is from: mainbus_attach() !

mainbus_attach_node() ! config_found_sm(), with locator early=1.

The SoC node in FDT is passed to mainbus_attach_node() so that all SoC’s

information is parsed and stored into fdt_attach_args. This fdt_attach_args

is then passed to config_found_sm() as aux, proving that simplebus0 is

configured in direct-mode. config_found_sm() will ultimately call

simplebus_match() and simplebus_attach() for matching and attaching,

respectively.

simplebus_match() simply checks if the FDT node buried in argument aux is

compatible with simple-bus.
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simplebus_attach() is called after config_attach() allocates

simplebus_softc and configures the embedded device structure.

simplebus_attach() further populates the simplebus_softc data structure.

After that, it scans the FDT tree to attach all child devices of simplebus0 via

simplebus_attach_node(). Devices with locator early=1 are attached first.

simplebus_attach_node() is similar to mainbus_attach_node(). It

first constructs the fdt_attach_args by parsing and pulling in properties for the

given FDT node. It then passes this fdt_attach_args to config_found_sm()

as its aux argument to recursively attach its children devices.

5.7.7 Platform-Level Interrupt Controller

This device is the global interrupt controller, PLIC. Its functional feature has been

fully discussed in paragraph 5.5.2.2. This subsection further explains how plic0 is

configured and attached.

PLIC is presented to kernel via FDT. Its definition is given in Snippet 35.

soc {
...
interrupt-controller@c000000 {

phandle = <0x00000003>;
riscv,ndev = <0x00000035>;
reg = <0x00000000 0x0c000000 0x00000000 0x04000000>;
interrupts-extended = <0x00000002 0x0000000b 0x00000002 0x00000009>;
interrupt-controller;
compatible = "riscv,plic0";
#interrupt-cells = <0x00000001>;
#address-cells = <0x00000000>;

};
...

};

Snippet 35. PLIC definition in autoconf

PLIC’s device definition is listed in Snippet 37. plic0’s configuration is in

Snippet 38. The resultant descriptor for plic0 is shown in Snippet 39. plic0 is
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attached as a child device of simplebus0. A summarized call stack to attach plic0 is

shown in Snippet 36 to demonstrate that autoconf is essentially a recursive process.

config_rootfound("mainbus")
|
|-config_rootsearch("mainbus")
|
|-config_attach(parent=ROOT)

|
|-mainbus_attach(parent=ROOT)

|
|-mainbus_attach_node(node=simplebus0)

|
|-config_found_sm(parent=mainbus0, aux=simplebus0)

|
|-config_search
| |
| |-simplebus_match
|
|-config_attach

|
|-simplebus_attach

|
|-simplebus_attach_node(node=plic0)

|
|-config_found_sm(parent=simplebus0,

| aux=plic0)
|-config_search
| |
| |-plic_match
|
|-config_attach

|
|-plic_attach

Snippet 36. Demonstration the call stack to plic_attach to show that autoconf is
essentially a recursive process.

plic_match() simply checks the given FDT node’s compatibility with

“riscv,plic0” or “sifive,plic-1.0.0”.

plic_attach() needs to complete the following tasks:

1) Determine the number of external devices that report interrupt to plic0.

2) Map plic0 to the virtual address space, so that all its memory-mapped registers

can be accessed via the generic bus_space_write_4() and

bus_space_read_4() operations.
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3) Allocate memory for PLIC_MAX_IRQS number of plic_irqsrc and initialize

each plic_irqsrc’s interrupt handler list.

4) Prepare the enable and context register offset for each context (essentially a HART

in supervisor-mode).

5) Call plic_calc_mask() to:

• Update each interrupt source’s maximum and minimum priority. This is because

each interrupt source could have multiple handlers attached, and each handler

could require different priorities corresponding to its own executing context.

• Enforce the min_priority to plic0’s priority register for this interrupt

source.

• Update the current context (curcpu()) threshold register to

min_priority - 1.

• Set the intersection of this interrupt source and current context to IRQ_ENABLE.

6) Establish external interrupts’ overall trap entry plic_irq_handler to the

HLIC’s intc_handler[IRQ_EXTERNAL_SUPERVISOR].

7) Update riscv_intr_func and substitute the previous default SPL-relevant

routines to PLIC-specific ones. This is required as a new SPL must be enforced to

plic0.

8) Hook plic_intr_establish_fdt() to plic0’s softc, so that devices can

use this routine to establish their interrupt handler to plic0.

9) Register plic0 to the global interrupt controllers list.
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6 PROJECT TESTING AND VERIFICATION

This section describes the end-to-end test flow and test methodology applied

throughout the project for quality assurance. The overall test flow is shown in Figure 22.

The methodology includes test model, test criteria, test coverage, and test tools.

Fig. 22. Project quality assurance flow.

6.1 Build Test

This test focus on the build tool availability, source code syntax correctness, and

library readiness.

The build environment involves:

• Host OS: OpenBSD.

• Cross toolchain: Clang/LLVM with support for RISC-V ISA.

• OpenBSD source tree.

Kernel cross-compile build should be able to compile, assemble, and link to generate

an integrated kernel image. The cross-compiled kernel image should have appropriate

ELF headers and appear reasonably formed when run through objdump or readelf.
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6.2 Boot Test

Boot test verifies the stability, and consistency for both bootloader and OpenBSD

ported kernel. The boot test environment involves:

• OpenBSD host machine.

• QEMU with support for qemu-system-riscv64.

• BBL source tree.

• Pre-built OpenBSD kernel.

The boot test steps include:

1) Build BBL with OpenBSD kernel as its payload.

2) Start kernel by executing ‘qemu-system-riscv64 -kernel bbl [other arguments]’.

3) Check QEMU console output to verify kernel boot progress.

4) Attach GDB debugger to perform single-step debugging, as necessary.

6.3 Function Test

Function test is divided into module unit test and system integration test.

6.3.1 Module Unit Test

Module unit test took up most of the testing effort. Unit test mainly uses white box

testing methodology, which is based on source code structures, data, and internal program

logic. White box test is executed by software developers.

• Test model: Program flow graph model

• Basic path testing, branch testing, and condition-based testing

– Basic path test derives linearly independent paths from program flow graph with

each independent path corresponding to a test case.

– Cyclomatic complexity determines the number of minimum basic path test cases.

– Branch test focuses on predicate node and branch link, and validates each branch.

– Condition-based test further decomposes compound Boolean expressions into

truth tables/sub-branches.
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• Coverage:

– Program source code line coverage

– Program predicate node coverage

– Program branch coverage

– Program control path coverage

– Program data flow coverage

– Program logic coverage

6.3.2 System Integration Test

This project natively fits bottom-up system integration test. Porting an OS kernel

primarily focuses on the machine-dependent layer, which sits at the bottom level. As the

high-level machine-independent functions remain intact, they can serve as the test driver

for the low-level function blocks directly.

System integration test is challenging because the machine-dependent modules are

tightly coupled with each other. For instance, the kernel bootstrap module designed in this

spec will affect any other module that requires access to the page table, such as memory

management module, process management module, etc.

After the source code update, regression tests should also be conducted.
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7 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Summary

With the target to port a secured operating system (OpenBSD) onto a secured

architecture (RISC-V), the following milestones have been reached in this project.

A develop environment has been established that incorporates kernel source code

editing, kernel image compilation, and kernel functionality verifying. The develop

environment consists of an x86-based OpenBSD host machine, an LLVM

cross-compilation toolchain, a bootloader (BBL), an emulated RISC-V hardware platform

on QEMU, and a remote debugger GDB. With these tools, the kernel source code is

adapted and cross-compiled onto a riscv64 target. The resultant OpenBSD kernel is

then encapsulated into BBL as its payload to run on the QEMU-emulated riscv64

machine. QEMU provides the GDB stub which can be remotely connected to GDB to

probe the kernel’s execution.

The ported OpenBSD kernel can complete an early-stage bootstrap within the

Supervisor Execution Environment provided by QEMU and BBL. The kernel bootstrap is

implemented to construct an initial page table, to enable Sv39-mode paging, to set up the

overall trap entry, to construct a C runtime and jump to the C routine to continue the

bootstrap procedure.

The ported OpenBSD kernel can manage 512 GiB virtual address space with the

UVM memory subsystem. Specifically, the OS kernel can create, activate, and update

in-memory page tables after adapting the machine-dependent physical map layer to the

RISC-V’s MMU, which operates in Sv39-mode.

The ported OpenBSD kernel can manually construct a process context for itself to

become process 0. From this process 0, the kernel can spawn more processes and

organize them in a tree hierarchy. The ported kernel implements the machine-dependent
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context switch routine so that it can schedule multiple processes to time-slice a single

RISC-V HART.

The ported OpenBSD kernel can handle traps that arise due to both interrupts and

exceptions. Timer interrupts and external interrupts can be routed and processed via a

two-level nested interrupt controller architecture. Exceptions due to environment call from

user-mode can be utilized to implement system calls. Exceptions due to memory faults

are generally handled by aborting the data access.

The ported OpenBSD kernel can probe and configure devices including HART, UART,

timer, and interrupt controllers into a tree hierarchy by leveraging the FDT and

autoconf framework and providing the device definition, configuration, and descriptor

source code.

7.2 Conclusions

To port OpenBSD to RISC-V ISA, this project has implemented assembly

initialization for kernel early bootstrap, adapted PMAP to RISC-V MMU in Sv39 mode,

implemented routines for process creation and context switch, developed trap handlers for

interrupts and exceptions, and developed drivers to probe and attach MD devices.

7.3 Recommendations for Further Development

Despite the milestones achieved in this project to port the OpenBSD kernel to RISC-V,

there is still significant work to be done to get the OpenBSD operating system into a

stable stable for general purpose use. To bound project complexity, a number of features

have yet to be implemented. Potential future work to bring the OpenBSD operating

system to a stable state for general purpose use include:

• Separate out parts of locore.S into locore0.S.

• Support for the Sv48 virtual memory address translation scheme.

• Audit of RISC-V MD kernel source for bugs and other vulnerabilities.

• Build userland components (libc, libcompiler_rt, and others).
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• Generate a root file system image of OpenBSD userland components.

• Support for Simultaneous Multi-Processing.

• Support for Multi-user mode.
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Appendix A

DEVICE DEFINITION AND CONFIGURATION SOURCE CODE

A.1 Device Definition Code

The device definition source code in files.riscv64 is written using a “machine

description” language. The definition for machine-dependent devices in this project is

presented in Snippet 37.

# mainbus ≈
define mainbus {[early = 0]}
device mainbus: fdt
attach mainbus at root
file arch/riscv64/dev/mainbus.c

# cpu
define cpu {}
device cpu
attach cpu at mainbus
file arch/riscv64/riscv64/cpu.c

# timer
device timer
attach timer at cpu
file arch/riscv64/dev/timer.c

# HART-Level Interrupt Controller
device intc
attach intc at cpu
file arch/riscv64/dev/riscv_cpu_intc.c

# simplebus
define simplebus {[early = 1]}
device simplebus
attach simplebus at mainbus
file arch/riscv64/dev/simplebus.c

# PLIC
device plic
attach plic at simplebus
file arch/riscv64/dev/plic.c

...

# Machine-independent FDT drivers ∆
include "dev/fdt/files.fdt"

Snippet 37. Device definition in files.riscv64 for Mainbus, HART, Timer, HLIC, Simplebus,
and PLIC
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A.2 Device Configuration Code

The device configuration code is presented in GENERIC as shown in Snippet 38,

which specifies the device’s attachment point, and whether or not the device should be

attached early in the autoconf procedure.

# mainbus «
mainbus0 at root

# cpu0
cpu0 at mainbus0

# timer0
timer0 at cpu0

# intc0
intc0 at cpu0

# NS16550 compatible serial ports
com* at mainbus0 early 1

# simplebus0
simplebus* at mainbus0 early 1

# Platform Level Interrupt Controller
plic* at simplebus? early 1

# virtio
virtio* at mainbus0
vioblk* at virtio?

scsibus* at scsi?
sd* at scsibus?

Snippet 38. Device configuration in GENERIC for mainbus0, cpu0, timer0, intc0,
com*, simplebus0, and plic0

A.3 Auto-generated Device Configuration Table

From the device definition and configuration as presented above, an ioconf.c source

file will be automatically generated by the config(8) framework. Snippet 39 lists the key

data structure in ioconf.c, which describes each device’s driver and attachment rules.
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struct cfdata cfdata[] = {
/* attachment driver unit state loc flags parents nm starunit1 */

/* 2: mainbus0 at root */ »
{&mainbus_ca, &mainbus_cd, 0, NORM, loc, 0, pv+ 3, 0, 0},

/* 3: cpu0 at mainbus0 early 0 */
{&cpu_ca, &cpu_cd, 0, NORM, loc+ 3, 0, pv+ 4, 1, 0},

/* 4: timer0 at cpu0 */
{&timer_ca, &timer_cd, 0, NORM, loc, 0, pv+12, 2, 0},

/* 5: intc0 at cpu0 */
{&intc_ca, &intc_cd, 0, NORM, loc, 0, pv+12, 2, 0},

/* 6: simplebus* at mainbus0 early 1 */
{&simplebus_ca, &simplebus_cd, 0, STAR, loc+ 2, 0, pv+ 4, 1, 0},

/* 7: plic* at simplebus* early 1 */
{&plic_ca, &plic_cd, 0, STAR, loc+ 2, 0, pv+ 6, 3, 0},

/* 8: vioblk* at virtio* */
{&vioblk_ca, &vioblk_cd, 0, STAR, loc, 0, pv+10, 4, 0},

/* 9: virtio* at mainbus0 early 0 */
{&virtio_mmio_ca, &virtio_cd, 0, STAR, loc+ 3, 0, pv+ 4, 1, 0},

/* 10: com* at mainbus0 early 1 */
{&com_fdt_ca, &com_cd, 0, STAR, loc+ 2, 0, pv+ 4, 1, 0},

...
{(struct cfattach *)-1}

};

Snippet 39. Device descriptions in ioconf.c for mainbus0, cpu0, timer0, intc0,
simplebus0, plic0, and com*, etc.
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