
Enrypting Virtual MemoryNiels ProvosCenter for Information Tehnology IntegrationUniversity of Mihiganprovos�iti.umih.eduAbstratIn modern operating systems, ryptographi �le sys-tems an protet on�dential data from unautho-rized aess. However, one an authorized proesshas aessed data from a ryptographi �le system,the data an appear as plaintext in the unprotetedvirtual memory baking store, even after systemshutdown. The solution desribed in this paper usesswap enryption for proesses in possession of on-�dential data. Volatile enryption keys are hosenrandomly, and remain valid only for short time peri-ods. Invalid enryption keys are deleted, e�etivelyerasing all data that was enrypted with them. Theswap enryption system has been implemented forthe UVM [7℄ virtual memory system and its perfor-mane is aeptable.1 IntrodutionMany omputer systems employ ryptographi �lesystems, e.g. CFS [4℄, TCFS [6℄ or enryption lay-ers [19℄, to protet on�dential data from pryingeyes. A user without the proper ryptographi keyis unable to read the ontents of the ryptographi�le system, nor is he able to glean any useful infor-mation from it. However, baking store of the vir-tual memory system is generally unproteted. Anydata read by a proess that was originally enryptedan be found as plaintext in swap storage if the pro-ess was swapped out. It is possible for passwordsand pass phrases to reside in swap long after theyhave been typed in, even aross reboots.A user expets that all on�dential data vanisheswith proess termination, and is ompletely un-aware that data an remain on baking store. Andeven if she were aware of it, there is next to nothingshe an do to prevent its exposure.

If the integrity of the operating system is ompro-mised and an untrusted party gains root privilegesor physial aess to the mahine itself, she alsogains aess to the potentially sensitive data re-tained in baking store.Our solution to this problem is to enrypt pages thatneed to be swapped out. These pages are deryptedwhen they are brought bak into physial memory,e.g. due to a page fault. After a proess terminates,all its pages stored on baking store are invalid, sothere is no need to be able to derypt them; on theontrary, nobody should be able to derypt them.This suggests the use of volatile random keys thatexist only for short time periods.The remainder of this paper is organized as follows.Setion 2 provides further motivation for enrypt-ing the baking store and desribes related work. InSetion 3 we give a brief overview of virtual mem-ory, note a seurity problem of seondary storage,and disuss how it an be resolved with enryption.Setion 4 explains how we implemented swap en-ryption. In Setion 5 we analyse how the pagingtimes and system throughput are a�eted. Finally,we onlude in Setion 6.2 Related WorkComputer systems frequently proess data that re-quires protetion from unauthorized users. Oftenit is enough to use aess ontrol mehanisms ofthe operating system to determine who may aessspei� data. In many ases a system also needsto be seured against physial attaks or protetedagainst seurity ompromises that allow the irum-vention of aess ontrols. Blaze addresses dataprotetion with a ryptographi �le system alledCFS by enrypting all �le system data, preventinganyone without the proper ryptographi key from

aessing its ontent [4℄. Anderson, Needham andShamir aim at hiding the existene of data from anattaker by using a \Steganographi File System"[1℄. A ryptographi key and the knowledge that a�le exists are needed to aess a �le's ontents. How-ever, seurity depends on the whole system, and aninvestigation of the interation with other systemomponents is essential.Neither paper looks arefully at its operating envi-ronment, nor do they take into onsideration thaton�dential data might inadvertently end up inbaking store. The storage of on�dential data ona swap devie may defeat the purpose of enryptionin CFS. Swap data an also be used to reonstrutwhat �les are present in a system, thus defeatingthe purpose of steganography.Swap enryption is meant to protet on�dentialdata left on the baking store from intruders whohave gained physial aess to the storage medium.We observe that the same an be ahieved by delet-ing all on�dential data one it is no longer refer-ened. However, Gutmann has shown that it is diÆ-ult to delete thoroughly information from magnetimedia or random-aess memory [16℄. He states:\the easiest way to solve the problem of erasing sen-sitive information from magneti media is to ensurethat it never gets to the media in the �rst plae.Although not pratial for general data, it is oftenworthwhile to take steps to keep partiularly impor-tant information suh as enryption keys from everbeing written to disk."Shneier and Kelsey desribe a seure log systemthat keeps the ontents of the log �les on�den-tial even if the system has been ompromised [24℄.While swap enryption is quite di�erent from seurelogging, the attak senario and operating environ-ment is similar.There are other systems that modify the pagingbehavior of a virtual memory system. Notably,Fred Douglis' ompression ahe ompresses mem-ory pages to avoid ostly disk aesses [10℄.3 Virtual Memory SystemOne purpose of virtual memory is to inrease thesize of the address spae visible to proesses byahing frequently-aessed subsets of the address

spae in physial memory [2℄. Data that does not�t in physial memory is saved on seondary storageknown as the baking store. Paged out memory isrestored to physial memory when a proess needsto aess it again [7℄.In many operating systems, the virtual memorypager daemon is responsible for reading and writingpages to and from their designated baking store.When a page has been written, it is marked as\lean" and an be evited from physial memory.The next time a proess aesses the virtual mem-ory that was assoiated with this page, a page faultours.If the page is still resident in physial memory, it ismarked as \reently used," and additionally \dirty"if the page fault is aused by a write aess. Other-wise, beause the page is no longer resident in phys-ial memory, the pager alloates a page of physialmemory and retrieves the data from baking store.3.1 Seondary StorageCompared to RAM speeds, seondary storage isusually made up from slow media, e.g. raw par-titions on disk drives. Unlike primary memory, se-ondary storage is nonvolatile, and the data storedon it is preserved after a system shutdown. Depend-ing on usage patterns, a swap partition an retaindata for many months or even years.Con�dential data in a proess' address spae mightbe saved on seondary storage and survive there be-yond the expetations of a user. She assumes thatall on�dential data is deleted with the terminationof the proess. However, the data found by lookingat the ontent of several swap partitions of mahinesat the Center of Information Tehnology Integra-tion inluded: login passwords1, PGP pass phrases,email messages, ryptographi keys from ssh-agent,shell ommand histories, URLs, et.To avoid this, we developed a system that makesdata on the baking store impossible for an attakerto read if it was written a ertain time prior to theoperating system's ompromise.One approah is to avoid swapping ompletely bynot using seondary storage at all. But this is1The author was amazed to �nd not only his urrent pass-word, but also older ones that had not been used for months.

not a general solution, and there are many appli-ations and environments that require a virtual ad-dress spae bigger than the physial memory presentin the system.An appliation an prevent memory from beingswapped out by using the \mlok()" system all tolok the physial pages assoiated with a virtual ad-dress range into memory [16℄. There are severaldisadvantages with this approah. It requires ap-pliations to be rewritten to use \mlok()", whihmight not be possible for legay appliations or dif-�ult if it requires a ompliated analysis of whihparts of the memory ontain on�dential data. Inaddition, \mlok()" redues the opportunity of thevirtual memory system to evit stale pages fromphysial memory, whih an have a severe impaton system performane.In general, it is not desirable to prevent the systemfrom swapping memory to the disk. Instead, enryp-tion an be used to protet on�dential data when itis written to seondary storage by the pager. A userprogram ould install its own enrypting pager [2℄.This would lead to greater omplexity, require mod-i�ation of appliations and poses diÆult deisionsabout whih ryptosystem to use. If a ryptographi�le system like CFS [4℄ were available, the virtualmemory pager ould be on�gured to swap to a �lethat resided on an enrypted �le system.However, in ontrast to ommon use of enryp-tion [20℄, we require di�erent harateristis for ourryptographi system:� When a page on baking store is no longer refer-ened by its owner, the deryption key for thatpage should be irretrievably lost after a suitabletime period (tR) has passed.� Only the virtual memory pager should be ableto derypt data read from the baking store.Clearly, the best protetion is ahieved with tR = 0.The deryption key, and indiretly the page's on-tent, is irretrievably removed immediately when thepage is no longer referened. This behavior meetsthe user's expetation that on�dential data in aproess' address spae is deleted with the termina-tion of the proess.However, this is diÆult to ahieve, and we haveto trade o� seurity against performane. Often, a

tR > 0 is still aeptable. In the initial implemen-tation, we only guarantee tR � system uptime, butattempt to minimize the average tR.This implies the use of volatile enryption keys,valid maximally for the duration of the system's up-time. Suh keys are similar to ephemeral keys usedto ahieve perfet forward serey [9℄. A volatile keyis ompletely unrelated to all other keys. Knowledgeof it does not allow the deryption of old data onseondary storage. Enryption keys are used onlyby the virtual memory pager and an be generatedon demand when they are required, eliminating theneed for ompliated key management.On the other hand, swapping to a ryptographi�le system does not ful�ll either of the two require-ments. Key management is an integral part of anenrypting �le system [5℄. Consequently, permanentnonvolatile enryption keys are present, making itpossible to read the data on the swap storage afterthe system has been shut down. Furthermore, a userwith aess rights to the swap �le on the enrypted�le system - usually the root user - an diretly readits ontents.Instead, we employ enryption at the pager level.Pages that are swapped out are (optionally) en-rypted, and enrypted pages that are read fromseondary storage are derypted.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70
0

20

40

60

80

100

nu
m

be
r

of
 p

ag
es

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 in

 p
er

ce
nt

time in minutesFigure 1: Histogram of page resideny in seondarystorage for a desktop session and orresponding umu-lative probability.We ompared page enryption to zeroing a page onthe baking store after it is dereferened. To get abetter understanding of the overheard inurred bysuh a measure, we reorded how long pages reside

on baking store. Figure 1 shows the result for adesktop session.Most pages remain in the baking store for only afew minutes. The strong temporal orrelation be-tween swapping and zeroing an result in unnees-sary leaning of pages that will be overwritten im-mediately, and will impat on system performanedue to expensive write operations. Zeroing pagesalso fails to protet against physial attaks thatprevent writes to seondary storage, e.g. an attakerstealing disks or turning o� the system's power sup-ply.In summary, enryption has the following advan-tages over physially zeroing pages on the bakingstore.� Deleting data by erasing it on disk inurs extraseek time and additional I/O for writing. Onthe other hand, with enryption the ontent ofa page disappears when its respetive enryp-tion key is deleted. Furthermore, enrypting apage is fast ompared to writing it, and the en-ryption ost is spread evenly over the wholeswapping proess.� Enryption provides better protetion againstphysial attaks. Mere possession of the diskdrive is not suÆient to read its ontent. Theorret enryption key is required, but manyphysial attaks disrupt the operation of themahine; the ontent of physial memory islost, and thus also the enryption key. Ad-ditionally, enryption prevents \ompromisingemanations" aused by data transfers to se-ondary storage, i.e. eletromagneti radiationthat arries sensitive information and an bereeived remotely [11℄.� Reliably deleting data from magneti media isdiÆult, a problem that does not apply whenusing enryption [16℄.In the next setion, we desribe our implementationof swap enryption.4 Swap EnryptionSwap enryption divides naturally into two separatefuntions: enryption and deryption. The former

requires a poliy deision about when to enryptpages. The latter requires knowing whih pages readfrom swap need to be derypted. The enryptionpoliy an be very simple, e.g. all pages that goto swap will be enrypted. A more sophistiatedpoliy might enrypt only pages of proesses thathave read data from a ryptographi �le system.The enumeration of suh poliies is the subjet offuture work.In all ases, though, the deryption is ompletelyindependent from the deision to enrypt. For thatreason, we keep a bitmap in the swap devie thatindiates for eah page whether it needs to be de-rypted after it has been read. Thus, it is possibleto hange the enryption poliy during the runtimeof the system without a�eting the deryption ofpages that have been enrypted while a di�erentpoliy was in e�et.To ahieve lower upper bounds on the window ofvulnerability (tR), we divide the baking store intosetions of 512 KByte2, and give eah setion itsown key. A key onsists of a 128-bit enryption key,a referene ounter and an expiration time. For abaking store of 256 MByte, keys oupy 14 KByteof memory.A setion's 128-bit ryptographi key is reated ran-domly the �rst time it is needed, and its refereneounter is set to 0. Eah time a new page is en-rypted with it, the ounter is inremented.When a page is freed on the baking store, the ref-erene ounter of the respetive key is deremented.A key is immediately deleted when the refereneounter reahes 0. Thus, all data enrypted withthat key an no longer be derypted and is e�e-tively erased.At the moment the �rst page in a setion beomesunreferened, its enryption key is set to expire aftera time period tR. After tR has been reahed, allpages that referene it have to be re-enrypted witha new key. The number of pages that need to beproessed is bounded by the setion size, so thatthe additional enryption overhead is on�gurable.The framework for expiration exists, but we haveyet to implement re-enryption. However, one thishas been done, we an make striter guarantees forthe time that pages remain readable on the baking2The setion size is on�gurable, and depends on howmuh memory is available for ryptographi keys.

store.Figure 2 desribes the paging proess in severalsteps, and shows where enryption and deryptiontake plae:1. A user proess referenes memory.2. If the referened address has a valid mapping,the data is aessed from the mapped physialpage.3. If the referened address has an invalid map-ping, a page fault ours.4. The pager reads the orresponding page fromseondary storage.5. The page is derypted if its entry in the bitmapindiates that it is enrypted.6. Finally, the page is mapped into physial mem-ory, and the page fault is resolved.7. Conversely, if the page daemon deides to evita page from physial memory,8. the pager enrypts the page with the enryptionkey of the setion that the page belongs to.(a) If the setion does not have an enryp-tion key, e.g. it is the �rst enryption, avolatile enryption key is initialized fromthe kernel's entropy pool.9. Afterwards, the page is written to seondarystorage.There is one entral di�erene between page en-ryption and deryption. Pages an be deryptedin plae beause immediately after they have beenread into memory, no proess is allowed to aessthese pages until they have been derypted. On theother hand, even after a page has been swapped out,a proess may aess it at any time. This preludesin-plae enryption. Instead, we have to alloatepages into whih to store temporarily the enryp-tion result, plaing additional pressure on the al-ready memory limited VM system.The volatile keys are stored in an unmanaged partof the kernel memory. As a result, they are neverpaged out.

Pool

Physical Memory

encrypt

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Virtual Address Space

Mapper

Page Out

Page In

Pager

decrypt

not resident

residentVM System

Secondary Storage

vo
la

til
e

ke
y

1

2

3

4

5

6

7

9

8a

8

Entropy

Figure 2: An overview of the swap enryption proess.4.1 Cipher SeletionTo be suitable for swap enryption, a ipher needsto ful�ll at least three important riteria:� Enryption and deryption need to be fast om-pared to disk I/O, so that the enryption doesnot beome the limiting fator in the swappingproess.� The generation of a ipher's key sheduleshould be inexpensive ompared to enryptinga page, so that hanging the key shedule doesnot a�et performane. The key shedule of aipher is usually larger than its enryption key.To onserve system memory we should reom-pute it every time we swith enryption keys,e.g. the enryption key hanges when pages arewritten to di�erent setions.� The ipher has to support enryption and de-ryption on a page by page basis, sine page inand page out are not sequential. This preludesthe use of a stream ipher.Initially, we planned to employ Shneier's Blow-�sh enryption algorithm [23℄. Its software imple-mentation is very fast, and it has been in use forseveral years without any apparent seurity aws.Nonetheless, Blow�sh has one ritial drawbak.The omputation of its key shedule is very expen-sive, and requires more than 4 KByte of memory.

For that reason, omputing the key shedule whenit is needed is too expensive, and preomputation isnot possible due to large memory requirements.Based on our environmental onstraints, the ipherthat mathes our needs the best is Rijndael [8℄. Wedesribe it in the next setion.4.2 RijndaelRijndael is one of the �nalists in the advaned en-ryption standard (AES) ompetition. It is a vari-able blok and key length ipher. In ontrast tomany other blok iphers, its round transformationdoes not have the Feistel struture. Instead, theround transformation is omposed of distint lay-ers: a linear mixing layer, a non-linear layer, and akey addition layer. Rijndael's design tries to ahieveresistane against all known attaks while maintain-ing simpliity [8℄.Compared to Blow�sh, Rijndael is faster in all as-pets, but less studied [12℄. We deided to use Rijn-dael with 128-bit bloks and 128-bit keys. With theoptimized C implementation by Gladman [13℄, theenryption key shedule an be omputed in 305 y-les on a Pentium Pro; the deryption key sheduleosts 1398 yles. A blok an be enrypted in 374yles, and blok deryption takes 352 yles.However, beause all enryption and deryption isdone on 4 KByte units, the ost of the key sheduleomputation is amortized. Therefore, even if wehange the key shedule every time, the enryptionost is only 375 yles on average, and for deryptionit is 357 yles.Normally, the overall performane of an enryp-tion algorithm is inuened by word onversion toaommodate little and big endian arhitetures.However, beause enryption and deryption hap-pen on the same mahine, the word order of thealgorithm's output is not relevant, and we do notneed to take endianness into onsideration.We use Rijndael in ipher-blok haining (CBC)mode. The CBC mode of operation involves the useof a 128-bit initialization vetor. Idential plaintextbloks enrypted under the same key but di�erentIV s, produe di�erent ipher bloks. With 0 = IV ,the result of the enryption is de�ned asi = EK(i�1 � xi);

where the xi are the plaintext and i the iphertextbloks. The deryption is similarxi = i�1 �E�1K (i):For swap enryption, the initial 128-bit IV is the64-bit blok number to whih the page is written,onatenated with its bitwise omplement. This en-sures that eah page is enrypted uniquely.Caution is indiated beause hanging the IV in se-quential inrements for adjaent pages may resultin only small input di�erenes to the enryptionfuntion. The attaks desribed in \From Di�eren-tial Cryptanalysis to Ciphertext-Only Attaks" [3℄might apply in suh a situation. For that reason,we enrypt the blok number and use that for theIV . Biryukov and Kushilevitz also state, \Anothermethod of IV hoie is the enryption of the data-gram sequene numbers [...℄, and sending [the℄ IV in[the℄ lear (expliit IV method) [...℄. This methodis also very vulnerable to our analysis, [...℄." Nev-ertheless, in our ase the IV is not expliit, and noIV di�erenes an be observed diretly.4.3 Pseudo-random GeneratorTo initialize a volatile enryption key we require asoure of random bits. The generation of random-ness with deterministi omputers is very hard. Inpartiular, we do not strive to reate perfet ran-domness haraterized by the uniform distribution.Instead, we use pseudo-random generators.A pseudo-random generator has the goal that itsoutput is omputationally indistinguishable fromthe uniform distribution, while its exeution mustbe feasible [14℄. A pseudo-random generator is re-alized by a strething funtion g that maps stringsof length n to strings of length l(n) > n. If X isa random variable uniformly distributed on stringsof length n then g(X) appears to be uniformly dis-tributed on strings of length l(n) [18℄.For our purpose, we use the pseudo-random num-ber generator (PRNG) provided by the OpenBSDkernel [21℄. The PRNG is a ryptographi streamipher that uses a soure of strong randomness3 for3The term \soure of strong randomness" represents agenerator whose output is not really random, but dependson so many entropy providing physial proesses that an at-taker an not pratially predit its output.

initialization and reseeding. This soure is referredto as the \entropy pool."Nonetheless, the problem on how to aumulatestrong randomness for the entropy pool remains.Fortunately, a multi-user operating system hasmany external events from whih it an derive somerandomness. Gutmann desribes a generi frame-work for a randomness pool [17℄.In OpenBSD, the entropy poolP := fp1; p2; : : : ; p128gonsists of 128 32-bit words. To inrease the pool'srandomness the kernel ollets measurements fromvarious physial events: the inter-keypress timingfrom terminals, the mouse interrupt timing and thereported position of the mouse ursor, the arrivaltime of network pakets, and the �nishing time ofdisk requests.The measured values from these soures are addedto the entropy pool by a mixing funtion. For eahvalue, the funtion replaes one word in the pool asfollows: pi u� pi+99 � pi+59 � pi+31 �pi+9 � pi+7 � pi;where i is the urrent position in the pool, and u the32-bit word that is added. Index addition is modulo128. After a value has been added i is deremented.To estimate the randomness in the pool, the entropyis measured by a heuristi based on the derivativesof di�erenes in the input values.A random seed is extrated from the entropy poolas follows: First, the onatenation of p1p2 : : : p128is given as input to an MD5 hash [22℄. Seond,the internal state of the MD5 hash for the previousomputation is added into the entropy pool. Third,the resulting pool is fed one more into the MD5hash. Finally, the message digest is alulated. Theoutput is \folded" in half by XOR-ing its upper andlower word. The resulting 64 bits are returned asthe seed.The strething funtion is implemented by ARC4,a ipher equivalent to RSADSI's RC4 [25℄. The i-pher has an internal memory size of M = n2n+2n,with in our ase n = 8. We use the random seedsextrated from the entropy pool to initialize the Mbits. The output of RC4 is expeted to yle after2M�1 iterations. However, Goli� showed that a or-relation between the seond binary derivative of the

least signi�ant bit output sequene and 1 an bedeteted in signi�antly fewer iterations [15℄, whihallows the di�erentiation of RC4 from a uniform dis-tribution. We an avoid this problem by reseedingRC4's internal state before the number of ritialiterations has been reahed. In fat, the implemen-tation in OpenBSD reseeds the ARC4 every timeenough new entropy has been aumulated.The kernel provides the \ar4random(3)" funtionto obtain a 32-bit word from the pseudo-randomnumber generator.The volatile key of a setion is reated by �lling itwith the output from \ar4random(3)." We hopethat between the time the system has been bootedand the �rst swap enryption suÆient randomnessis available in the kernel entropy pool to ensuregood randomness in the RC4 output. Nonetheless,it should be noted that this onstrution does notreate a provably pseudo-random generator as de-sribed in the beginning of this setion.5 Performane EvaluationIn the following, we analyse the e�et of swap en-ryption on the paging behavior. We look at pageenryption and deryption times, and assess theruntime of appliations with large working sets.All measurements were performed on an OpenBSD2.6 system with 128 MByte main memory and a333 MHz Celeron proessor. The swap partitionwas on a 6 GByte Ultra-DMA IDE disk, IBMmodel DBCA-206480 running at 4200 revolutionsper minute. The operating system an sustainan average blok write rate of 7.5 MByte/s and ablok read rate of 6.3 MByte/s. OpenBSD uses theUVM [7℄ virtual memory system.5.1 Miro BenhmarkOur miro benhmark measures the time it takesto enrypt one page. A test program alloates 200MByte of memory, and �lls the memory sequentiallywith zeros. Afterwards, it reads the alloated mem-ory from the beginning in sequential order. Theproess is repeated three times.

We use kernel pro�ling to measure page enryptionfrequeny, and the umulative time of the enryp-tion funtion. The kernel funtion \swap enrypt()"is alled 155336 times with a umulative runningtime of 67:96 seonds. One 4 KByte page ouldbe enrypted in 0:44 ms, resulting in an enryptionbandwidth of 8:9 MByte/s. The total amount ofmemory enrypted is 600 MByte.In UVM, writes to the baking store are asyn-hronous and reads are synhronous. To determineif I/O is still the bottlenek of the swapping pro-ess, we measured the runtime of the test programfor di�erent memory sizes, with and without swapenryption. We measure an inrease in runtimeof about 14% with enryption. To measure asyn-hronous writes, we modi�ed the test program towrite only to memory. The runtime inrease of 26%- 36% is due to alloation of new pages that store theenrypted pages until they are written to disk, thusausing the system to swap more often. Figure 3shows a graph of the results.

0

50

100

150

200

250

300

100 120 140 160 180 200

ru
nt

im
e

in
 s

ec
on

ds

allocated memory in MByte

seq. read and write with encryption
seq. read and write without encryption

seq. write with encryption
seq. write without encryption

Figure 3: Performane di�erene between swap en-ryption and normal swapping when pages are aessedsequentially, illustrating the di�erene between asyn-hronous write and synhronous reads.5.2 Maro BenhmarkTo judge the impat of swap enryption on ap-pliation programs, we used ImageMagik to pro-ess a 960 � 1280 image with a 16-bit olorspae.The image was magni�ed and then rotated by 24o.The runtimes for di�erent magni�ation fators areshown in Table 1.

No Enryption EnryptionMagni- Major Runtime Major Runtime�ation Faults (in se) Faults (in se)2:30� 0.4 103 49s 0.4 103 49s2:35� 19 103 145s 18 103 147s2:40� 22 103 169s 22 103 180s2:50� 24 103 179s 24 103 276sTable 1: Runtime of image proessing tool for dif-ferent magni�ation fators.The table ompares the major faults and programruntime for a system that does not use enryptionagainst a system that does. A major fault is a pagefault that requires I/O to servie it, and does nottake into aount the pages that have been pagedout by the paging daemon.With inreasing magni�ation fator, the workingset size of the program grows larger. We measurea sharp inrease of the running time with swap en-ryption for a magni�ation fator of 2:5. However,for the other magni�ation fators the program run-time is not a�eted that muh, even though nearlyhalf of the program's memory was on baking store.Thus, we believe that the overhead aused by en-ryption is tolerable.6 ConlusionCon�dential data an remain on baking store longafter the proess to whih the data originally be-longed has terminated. This is ontrary to a user'sexpetations that all on�dential data is deletedwith the termination of the proess. An investi-gation of seondary storage of mahines at the Cen-ter for Information Tehnology Integration revealedvery on�dential information, suh as the author'sPGP pass phrase.We investigate several alternative solutions to pre-vent on�dential data from remaining on bakingstore, e.g. erasing data physially from the bakingstore after pages on it beome unreferened. How-ever, we �nd that enryption of data on the bakingstore with volatile random keys has several advan-tages over other approahes:� The ontent of a page disappears when its re-spetive enryption key is deleted, a very fast

operation.� Enryption provides protetion against physi-al attaks, e.g. an attaker stealing the diskthat ontains the swap partitionEnryption enables us to make the guarantee thatunreferened pages on the baking store beome un-readable after a suitable time period upper boundedby system uptime has passed.We have demonstrated that the performane of ourenryption system is aeptable, and it proves to bea viable solution.The software is freely available as part of theOpenBSD operating sytem and an also be obtainedby ontating the author.7 AknowledgmentsI thank Patrik MDaniel and my advisor PeterHoneyman for areful reviews and helpful ommentson the organization of this paper. I also thankChuk Lever for getting me interested in swap en-ryption, Artur Grabowski for improving my un-derstanding of UVM and David Wagner for helpfulfeedbak on ipher seletion.Referenes[1℄ R. Anderson, R. Needham, and A. Shamir. TheSteganographi File System. In Proeedings of theInformation Hiding Workshop, April 1998.[2℄ A. Appel and K. Li. Virtual Memory Primitives forUser Programs. In Proeedings of the 4th Interna-tional Conferene on Arhitetural Support for Pro-gramming Languages and Operating Systems, April1991.[3℄ Alex Biryukov and Eyal Kushilevitz. From Di�er-ential Cryptanalysis to Ciphertext-Only Attaks.In Proeedings of the Advanes in Cryptology |CRYPTO '98, pages 72{88. Springer-Verlag, Au-gust 1998.[4℄ Matt Blaze. A Cryptographi Filesystem for Unix.In Proeedings of the First ACM Conferene onComputer and Communiations Seurity, pages 9{16, November 1993.

[5℄ Matt Blaze. Key Management in an EnryptingFile System. In Proeedings of the 1994 USENIXSummer Tehnial Conferene, pages 27{35, June1994.[6℄ G. Cattaneo and G. Persiano. Design andImplementation of a Transparent CryptographiFilesystem for Unix. Unpublished Tehnial Re-port, July 1997. ftp://edu-gw.dia.unisa.it/pub/tfs/dos/tfs.ps.gz.[7℄ Charles D. Cranor and Gurudatta M. Parulkar.The UVM Virtual Memory System. In Proeedingsof the 1999 USENIX Annual Tehnial Conferene,pages 117{130, June 1999.[8℄ Joaen Daemen and Vinent Rijmen. AES Proposal:Rijndael. AES submission, June 1998. http://www.esat.kuleuven.a.be/~rijmen/rijndael/.[9℄ Whit�eld DiÆe, Paul C. van Oorshot, andMihael J. Wiener. Authentiation and authenti-ated key exhanges. Designs, Codes and Cryptog-raphy, 2(2):107{125, June 1992.[10℄ Fred Douglis. The Compression Cahe: Using On-Line Compression to Extend Physial Memory. InProeedings of 1993 Winter USENIX Conferene,pages 519{529, 1993.[11℄ Berke Durak. Hidden Data Transmission by Con-trolling Eletromagneti Emanations of Comput-ers. Webpage.http://altern.org/berke/tempest/.[12℄ Niels Ferguson, John Kelsey, Mike Stay, DavidWagner, and Brue Shneier. Improved Cryptanal-ysis of Rijndael. In Fast Software Enryption Work-shop 2000, April 2000.[13℄ Brian Gladman. AES Algorithm EÆieny. Web-page.http://www.btinternet.om/~brian.gladman/ryptography tehnology/aes/index.html.[14℄ Oded Goldreih. Modern Cryptography, Proba-bilisti Proofs and Pseudo-randomness. Springer-Verlag, 1999.[15℄ Jovan Dj. Goli�. Linear Statistial Weakness of Al-leged RC4 Keystream Generator. In Proeedings ofthe Advanes in Cryptology | Eurorypt '97, pages226{238. Springer-Verlag, May 1997.[16℄ Peter Gutmann. Seure Deletion of Data fromMag-neti and Solid-State Memory. In Proeedings of theSixth USENIX Seurity Symposium, pages 77{89,July 1996.[17℄ Peter Gutmann. Software Generation of PratiallyStrong Random Numbers. In Proeedings of theSeventh USENIX Seurity Symposium, pages 243{255, June 1998.[18℄ J. Hastad, R. Impagliazzo, L. Levin, and M. Luby.Constrution of Pseudorandom Generator from anyOne-Way Funtion, 1993.

[19℄ J. Heidemann and G. Popek. File-System Develop-ment with Stakable Layers. ACM Transations onComputer Systems, 12(1):58{89, February 1994.[20℄ Maurie P. Herlihy and J. D. Tygar. How to MakeRepliated Data Seure. In Proeedings of the Ad-vanes in Cryptology - CRYPTO '87, pages 379{391. Springer-Verlag, 1988.[21℄ Theo de Raadt, Niklas Hallqvist, Artur Grabowski,Angelos D. Keromytis, and Niels Provos. Cryp-tography in OpenBSD: An Overview. In Proeed-ings of the USENIX Annual Tehnial Conferene,FREENIX Trak, June 1999.[22℄ R. L. Rivest. The MD5 Message Digest Algorithm.RFC 1321, April 1992.[23℄ Brue Shneier. Desription of a New Variable-Length Key, 64-Bit Blok Cipher (Blow�sh). InFast Software Enryption, Cambridge SeurityWorkshop Proeedings, pages 191{204. Springer-Verlag, Deember 1993.[24℄ Brue Shneier and John Kelsey. CryptographiSupport for Seure Logs on Untrusted Mahines. InProeedings of the Seventh USENIX Seurity Sym-posium, pages 53{62, January 1998.[25℄ RSA Data Seurity. The RC4 Enryption Algo-rithm, Marh 1992.

