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Introduction '

e A Cryptographic file system protects confidential data from

unauthorized access.
e The proper cryptographic key is required to read its contents.

e However, the virtual memory system’s backing store is

generally unprotected.

e Passwords and pass phrases reside in it long after they have

been typed in, even across reboots.
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Introduction '

o A user

— expects that all confidential data vanishes with process

termination,
— 1s unaware that sensitive data may remain on backing store.
e When an attacker compromises the operating system’s
integrity
— by gaining root privileges,
— or by physical access to the machine itself

she also gains access to sensitive data retained in backing
store.

\_ /

Encrypting Virtual Memory 4 Copyright Niels Provos 2000




Introduction I

e Our solution is to encrypt pages before they are written to

secondary storage

e When the pages are brought back into physical memory, they
are decrypted

e Fach page has an associated encryption key.

e Encryption keys are destroyed, when they are no longer needed
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‘ Related Work I

e Data protection with the “Cryptographic File System” by
Blaze,

e Data hiding with the “Steganographic File System” by

Anderson, Needham and Shamir.

= data on secondary storage can reveal the content and

existence.
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‘ Related Work '

e Erasing the data on secondary storage could achieve the same

as encryption,

e but Gutmann has shown that it is very difficult to thoroughly

delete data from magnetic-media.
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Virtual Memory System'

Virtual Memory increases the address space visible to

application beyond the limits of physical memory.

Data that does not fit into physical memory is saved on

secondary storage.

When a process accesses a page that has been stored on

secondary storage a page fault occurs.

The page fault causes the page to be restored
store.

from backing
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Virtual Memory System'

e Secondary storage

— is usually slower than RAM,

— is non-volatile, data persists over system shutdowns.

e Confidential data can survive on it beyond a user’s

expectations.

e At CITI we found,

— login passwords,
— PGP pass phrases,

— email messages, ...
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Virtual Memory System'

Possible solutions:

e Avoid swapping completely: not a general solution, many

applications require address space bigger than physical memory

e Use mlock() to prevent special memory areas to be paged out:
applications need to be rewritten, reduces effectiveness of VM

system, can result in worse performance

= use encryption to protect confidential data.
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Virtual Memory System'

Encryption comes in several different flavors:

e User program installs own encrypting pager:
— increases complexity,
— requires applications to be modified,

— difficult design decision about crypto.

e VM system swaps to a file in a cryptographic file system.
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Virtual Memory System'

In contrast to common use of encryption, we require

e when a page is no longer referenced, its encryption key should

be destroyed after a time period (tg) has passed,
e only the virtual memory pager should be able to decrypt pages

Best protection with tp = 0, also meets user’s expectation that her

confidential data is deleted with process termination.
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Virtual Memory System'

e tr = 0 too impractical, we guarantee tgr < system uptime, but

attempt to minimize average tpg,

e use volatile encryption keys
— valid maximally for the duration of the system’s uptime

— completely independent of each other = perfect forward

secrecy

— no complicated key management.

e = employ encryption at pager level.
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/ Virtual Memory System' \
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e Most pages remain only for a few minutes, correlation:

\ unnecessary zeroing, bad impact on system performance /
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Virtual Memory System'

In comparison,

e deleting data by erasing incurs extra seek time and additional

I/0,

e crasing a page with encryption is fast, just destroy the
encryption key,

e encryption provides better protection against physical attacks,
mere possession of disk is not sufficient,

e reliably erasing data from magnetic-media is difficult, does not

matter for encryption.
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‘ Swap Encryption I

e Encryption and decryption are separated: policy decision vs.

need of decryption
— Policy: encrypt everything, only encrypt data from cfs, etc...

— Decryption: need to remember which pages to decrypt, keep

a bitmap = allows change of encryption policy.
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‘ Swap Encryption I

e Keep upper bound on ¢tz small by dividing the backing store

into sections of 512 KByte, each section has
— a 128-bit cryptographic key,
— reference counter,

— and an expiration time.
e 256 MByte backing store requires 14KB of memory for keys.
e Section’s 128-bit key is created randomly on first use.

e If a section’s reference counter is 0, its key is destroyed.

\_ /

Encrypting Virtual Memory 17 Copyright Niels Provos 2000




‘ Swap Encryption I
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‘ Swap Encryption I

Cipher Selection.

For swap encryption, a cipher needs to fulfill:
e Encryption and Decryption need to be fast compare to disk I/0

e Generation of the cipher’s key schedule has to be inexpensive

compared to encrypting a page.

e Cipher has to support encryption and decryption on page by

page basis, can not use stream cipher.
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‘ Swap Encryption I

e Schneier’s Blowfish encryption algorithm not suitable:

— key schedule computation is very slow

— key schedule requires a lot of memory

e Use Rijndael:
— is finalist in advanced encryption standard (AES)

competition,
— 128-bit blocks and 128-bit keys,

— round transformation does not have Feistel structure,

instead different layers,

— is faster in all aspects compared to Blowfish.
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‘ Swap Encryption I

e Key schedule computation cost is amortized when encrypting a

single 4 KByte page. (352 cycles vs. 357 cycles)
e We use the cipher in cipher-block chaining (CBC) mode.

e Encrypted block number is used as 128-bit initialization
vector (IV)

— each page is encrypted uniquely,

— try to avoid cipher text only attacks.
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‘ Swap Encryption I

e Security relies on good encryption keys.
e Require a good source of randomness.

e Entropy pool collects entropy from many physical events
observable by the operating system:
— inter-keypress timing from terminals,

— arrival time of network packets,

— finishing time of disk requests.

e Not practical for an attacker to observe all events.
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‘ Swap Encrytion I

e Use ARCA4 stream cipher to extract random encryption keys.
e R(C4’s internal state is initialized by the entropy pool.

e Frequently reseed RC4’s state to prevent none-uniform output
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e Running OpenBSD 2.6-current with UVM with 6 GByte
Ultra-DMA disk, 7.5MByte/s write and 6.3 MByte/s read.

e Micro benchmark fills memory with zeros and reads it.

e Runtime increase for reads about 14%, for writes between

\ 26%-36%
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Performance Evaluationl

e Macro benchmark using ImagicMagick: magnify 960 x 1280
image and rotate by 24°.

e For magnification by 2.5 runtime increases nearly by 70%.

e However, we believe that the overhead is still acceptable.
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/ Conclusion ' \

e Confidential data can remain on backing store.

e Looked at several alternative solutions, encrypting data on

backing store with volatile random keys has several advantages.
e Demonstrated acceptable performance and a viable solution.
e Software is freely available, contact the author.
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‘ Physical Memory I

e RIO shows that physical memory can be persistent across

reboots.

e However, it is common practice to erase keys before application
exit, e.g., OpenSSL, OpenSSH, etc...

e Encryption protects against persistent storage of data before

the application can clean up.
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