
Introduction

Porting OpenBSD to MIPS based
devices

Rainer Giedat

<rainer@staatssicherheit.com>

1./2. Dec 2007, OpenCON Venice

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Motivation

Do something new/challenging

Learn how stuff works (OpenBSD/Hardware)

Do something usefull

Have fun!!

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

The hardware

Linksys WRT54G
Broadcom BCM47xx SoC

MIPS32 4Kc CPU (BCM3302)
200 MHz
RAM: 32 MB (14MB)
2 FastEthernet interfaces
BCM43xx 802.11 interface
ADMtek ADM6996L switch

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Software

OpenWRT (Linux, GPL)

CFE (Broadcoms Common Firmware
Environment, BSD)

Maybe OpenBSD soon ;)

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

More MIPS32 hardware

Alchemy systems

Routerboard.com

IBM z50

Atheros based WLAN routers

All kinds of embedded systems...

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Start

Small demo programm with serial console
(barebone)

Learn how to compile cross

Learn little MIPS assembly

learn how to load and boot binaries

Find the serial console

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Cross Compiler

Nice OpenBSD cross compile framework

Hard to configure gcc

Crazy bugs (ld)

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Toolchain target mipsel for OpenBSD

Building BFD library to support mipsel on
OpenBSD
Configuring ld, gas and gcc for the new target
Examples:

gcc (gcc/gcc/config.gcc)
ld (binutils/ld/configure.tgt)

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Use the cross compile framework

Makefile.cross

Board and CPU

export TARGET_ARCH=mipsel

export TARGET=bcm47xx

make -f Makefile.cross cross-tools

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Learning MIPS assembly

Documentation from MIPS Inc.
A lot of tutorials from universities

All using the SPIM simulator

Porting Linux to MIPS howto http:

//linux.junsun.net/porting-howto/

Use gcc -S and/or objdump

Rainer Giedat Porting OpenBSD to MIPS based devices

http://linux.junsun.net/porting-howto/
http://linux.junsun.net/porting-howto/


Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Play with it

Get http://linux.junsun.net/porting-howto/

src/barebone.tar.gz

Read some easy code! Understand it!
start.S
barebone.lds
Makefile

Rainer Giedat Porting OpenBSD to MIPS based devices

http://linux.junsun.net/porting-howto/src/barebone.tar.gz
http://linux.junsun.net/porting-howto/src/barebone.tar.gz


Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Try to compile and run it

Does it crash/reboot?

Right load adress?

You do not see anything?

Why not?

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Serial console

See firmware info
CFE> show devices

uart0 NS16550 UART at 0x18000300

See linux dmesg
ttyS00 at 0xb8000300 (irq = 3) is a 16550A

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

MIPS32 memory layout (I)

VA Name Address Range Mode Size

0b111 kseg3 0xFFFFFFFF→0xE0000000 Kernel 229 bytes
0b110 ksseg 0xDFFFFFFF→0xC0000000 Super 229 bytes
0b101 kseg1 0xBFFFFFFF→0xA0000000 Kernel 229 bytes
0b100 kseg0 0x9FFFFFFF→0x80000000 Kernel 229 bytes
0b0xx useg 0x7FFFFFFF→0x00000000 User 231 bytes

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

MIPS32 memory layout (II)

Modes: User, Kernel, Supervisor

Determined by the StatusRegister

Kernel Mode: kseg1 mapping
(0xBFFFFFFF-0xA0000000) →
(0x00000000-0x1FFFFFFF)

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Serial Console (II)

.data

x: .byte 0x41

.text

lb v0, x

sb v0, 0xb8000300

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Compile a Kernel (I)

Just copy the shit from arch/mips64 to
arch/mipsel

keep conf/files.mipsel in sync

do the same for arch/sgi to (i.e.) arch/bcm47xx

Delete everything from GENERIC what you do
not need

keep conf/files.bcm47xx in sync

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Compile a Kernel (II)

Compile with
MACHINE=bcm47xx MACHINE_ARCH=mipsel make

Will not work → Port assembly to MIPS32
Mainly cuting constant values
Changing load/store instructions to 32bit (not
CP0)

Don’t forget to set the correct LINK ADDRESS

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Load the new Kernel

Most Firmwares can load ELF binaries by
TFTP (CFE does)

Print chars every step to see how far it goes

Fix ABI in locore.S ;-)

call mips init

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

mips init in machdep.c

Initialize Console

Configure MMU

Configure Cache

Configure physical memory

Initialize interrupt handlers

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

CFE interface (I)

A0: Firmware handle

A1: NULL

A2: Firmware entry point

A3: Seal (0x43464531)

→ everyting we need in mips init

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

CFE interface (II)

Read/Write system console (wrapper)

Manage caches (Invalidate/Flush D/I Caches)

Get physical memory blocks

Polling interface to network devices

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Get physical memory

cfe enummem

New block of memory on each iteration

Store it in phys memseg array

Tell UVM about them with
uvm page physload

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Initialize the MMU

Set pagesize(normally 4k)

uvmexp.pagesize = PAGE_SIZE;

uvm_setpagesize();

Load physical memory to UVM

Set the size of the TLB (guess it, or better read it

from the config register )

Flush the TLB

Set TLB PID (ASID) to 1 for proc0

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Initialize interrupt handler

Only 0x80 bytes space for them
Just copy them to the correct addresses

TLB MISS EXC
CACHE ERR EXC
Generic EXC

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

System BUS

SBBUS Silicon Backplane BUS

Different cores

Main Core0 always present at 0x18000000

1k register space for each core

All have the coreid at the same place

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

BUS Probing

Map first 1k at 0x18000000

Get the numer of cores from CoreCommon
config

Map the next 1k for each of them

Read their coreid

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Cores on WRT54G

Core 1 id: 0x806 ethernet core

Core 2 id: 0x816 mips3302 core

Core 3 id: 0x817 usb 1.1 host core

Core 4 id: 0x80f memc sdram core

Core 5 id: 0x812 802.11 core

Core 6 id: 0x81c roboswitch core

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

TODO

Write DMA Code

Enable interrupts on it

Write driver for Ethernet

Write driver for 802.11

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Compiling Userspace

Repeat stuff you did for the kernel
Copy machine dependend stuff from mips64 to
mipsel
Change it until it compiles ;)

make -f Makefile.cross cross-distrib

Build a ramdisk

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Config for Ramdisk

Kernel config GENERIC

option MINIROOTSIZE=3000

option RAMDISK_HOOKS

config bsd root on rd0a swap on rd0b

pseudo-device rd 1

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Preparing for Ramdisk

Steal a SRCDIR/ramdisk/bcm47xx somewhere

Delete entries from list you do not need

Build it =)

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Building the Ramdisk

Use make -f Makefile.cross cross-env

Then just make

Do not forget

make unconfig

Unmounting the pseudo filesystem svnd0

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Funky Bug

Kernel crashed at random points

Always the same point, same problem

Changed sometimes after recompilation

Seemed to be a bug in memory management

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Hunting the Bug

Checked the code in pmap.c

Got ddb running

Learned how TLB works

Wrote code to print page tables

Read UVM code and documentation

Discussed it with people (Mickey, ...)

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Finding the Bug

It was elfrdsetroot

It prints size of the ramdisk and size of the
image on different bases (hex and decimal)

It did not complain, that there is not enough
space

Searched the bug for weeks, because I can not
read and elfrdsetroot can not write ;)

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

What works so far?

Kernel is booting

Console and ddb works

Interrupts work

Syscall work

Init is starting...

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

What does not work?

...then it crashes!

mmap, mprotect, atexit,

do init, init, start

Then it reads the old StackPointer

The stack contains crap

Calling perf init crashes, because of not
aligned StackPointer (0x7ffd7ea1)

In the last syscall, the stack was OK

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Plans to find the Bug

Port to Qemu/MIPS

Emulates MIPS 4k CPU

Interrupt controller i8259 PIC

Timer i8254 PIT

Then use the Qemu debugger

Should not be too hard...

Who wants to help? ;)

Rainer Giedat Porting OpenBSD to MIPS based devices



Introduction

Motivation
Become familiar with the architecture
Compiling cross
Port Board

Thanks

Discussions, Answering Questions:
Mickey, Uwe Stühler, Martin Reindl, Alexander
Bluhm

Hardware Donations:
Hans Höxer, Wim Vandeputte, Klaus Landefeld

Kicking my ass over and over again:
Too many People

Rainer Giedat Porting OpenBSD to MIPS based devices


	Introduction
	Motivation
	Become familiar with the architecture
	Compiling cross
	Port Board


