
Getting started with

OpenBSD device driver development

Stefan Sperling <stsp@openbsd.org>

EuroBSDcon 2017



Clarifications (1/2)

Courtesy of Jonathan Gray (jsg@):

We don’t want source code to firmware

We want to be able to redistribute firmware freely

Vendor drivers are often poorly written, we need to be able to
write our own

We want documentation on the hardware interfaces

Source code is not documentation

OpenBSD Device Drivers 2/46



Clarifications (2/2)

I would like to add:

Device driver code runs in our kernel

Firmware code runs on a peripheral device, not in our kernel

When we say “Binary Blobs” we are talking about
closed-source device drivers, not firmware

Firmware often runs with high privileges; use at your own risk

If you do not want closed-source firmware, then don’t buy and
use hardware which needs it

We are software developers, we do not build hardware

We will not sign NDAs

Please talk to hardware vendors and advocate for change; the
current situation is very bad for free software

OpenBSD Device Drivers 3/46



This talk is for ...

somewhat competent C programmers

who use OpenBSD

and would like to use a device which lacks support

so have an itch to scratch (enhance or write a driver)

but are not sure where to start

perhaps are not sure how the development process works

and will research all further details themselves

The idea for this talk came about during conversations I had at
EuroBSDcon 2016. Common question: ”How do I add support for
my laptop’s wifi device?”

OpenBSD Device Drivers 4/46



Itches I have scratched...

piixpcib(4): ported some asm from NetBSD

rtsx(4): Realtek SD host controller driver

pms(4): support for Elantech touchpads

rtwn(4): PCIe version of urtwn(4)

run(4): device support ported from FreeBSD

ulpt(4): firmware loading for HP LaserJet

iwm(4): de-facto maintainer (original itch by phessler@)

iwn(4): 802.11n support; bug fixes

ral(4): bug fixes

athn(4): 802.11n support for my access point

xhci(4): support for isochronous transfers (with mpi@)

I am drawing on my own experience. The information provided
here is neither authoritative nor exhaustive. Do your own research!

OpenBSD Device Drivers 5/46



Process topics

OpenBSD Device Drivers 6/46



Getting in the right frame of mind

You will make many, many mistakes. Everyone does.
There will be a lot of:

unknowns

surprises

setbacks

You will overcome these with:

motivation

endurance

patience

Can you let a stuck project sit for a week and come back to it?
Or will you abandon your device driver project when it gets stuck?

OpenBSD Device Drivers 7/46



Pick a reasonable target

You may want your laptop’s Broadcom wifi to work now, but it
won’t happen. Start with something small as your first driver
project and work your way up.

Extend device support of an existing driver

Many drivers lack support for newest models of their devices
Sometimes just adding a new PCI/USB device ID is enough

Target a relatively simple device

Sensors – see sensordev attach(8)
Touchpads
Serial port adaptors
Time receivers
Real time clock sources
Many ARM boards still lack drivers for some components

OpenBSD Device Drivers 8/46



Research existing device drivers

Find drivers to read in /usr/src/sys/dev and with apropos(1).
Many types of drivers exist, such as:

sensors: asms(4), km(4), sdtemp(4), utrh(4), ...

gpio: bytgpio(4), macgpio(4), skgpio(4), ...

buses: pci(4), usb(4), sdmmc(4), sunxi(4), ...

disk: sd(4), wd(4), rd(4), mpi(4), ...

network: em(4), vr(4), ix(4), athn(4), iwn(4), iwm(4), ...

input: kbd(4), pms(4), ws(4), joystick(4), ...

display: wsfb(4), efifb(4), vga(4), inteldrm(4), ...

pseudo: tun(4), vlan(4), bio(4), softraid(4), ...

virtual: virtio(4), pvbus(4), vbus(4), vmx(4), ...

If possible, base your new driver on an existing one.

OpenBSD Device Drivers 9/46



Stages of driver development

Make kernel attach your device
to an existing driver if possible (and skip most steps below)
to your fresh bare skeleton driver

Register a stub function as interrupt handler
Device initialization (poking at registers with dark magic)

hack Linux driver to print all register reads and writes
sift through walls of hex values; implement same init sequence

Perhaps load some firmware?
Get your first interrupt (it’s alive!) and crash or hang
Fix a bug
Crash or hang
Fix a bug
Hardware reports some error status
Fix a bug
Crash or hang
Rinse and repeat
It suddenly works!

OpenBSD Device Drivers 10/46



Tips for your development environment

You will regularly crash the kernel. Use at least two machines:

one for editing code, reading docs, and compiling

one for rebooting, running your modified kernel, and crash

Tracking changes with cvs diff becomes impossible quickly.
Use local source code version control, such as:

https://github.com/openbsd for git users

hg patch queues inside a CVS checkout

fresh git/hg/fossil repo inside a subtree of a CVS checkout

OpenBSD Device Drivers 11/46

https://github.com/openbsd


Follow OpenBSD development

Be aware of what’s going on within OpenBSD

Subscribe to:

tech@openbsd.org
source-changes@openbsd.org

Update all your machines and diffs to -current before
embarking on another stretch of work on your project

Read all diffs sent and/or committed by developers working
within the vicinity of your driver

Ask technical questions to these developers

OpenBSD Device Drivers 12/46



Licensing

Follow the project’s copyright policy:
http://www.openbsd.org/policy.html

New code should be ISC-licensed

/usr/share/misc/license.template

Honour the rights of authors

Many authors do not want their code copied into OpenBSD
This includes GPL and other incompatible open source licences

Know your rights

Reverse-engineering from source or binary form for
interoperability is allowed in many jurisdictions, e.g.
“An objective of this exception is to make it possible to
connect all components of a computer system, including those
of different manufacturers, so that they can work together”
(EU Directive 2009/24)

OpenBSD Device Drivers 13/46

http://www.openbsd.org/policy.html


Finding information you need

Hardware without documentation is a dead brick.
Only use sources of information everyone can access:

published or leaked documents (search the web)

source code from other systems (Linux and FreeBSD)

reverse-engineered information on binary drivers

Do not sign an NDA. An NDA gives you privileged information
which your fellow developers cannot access. This makes effective
peer review of your code impossible and breaks our community’s
process. DO NOT SIGN AN NDA

OpenBSD Device Drivers 14/46



Finding new friends

Contact open source developers working on the same or similar
kinds of devices. Many of them work for hardware vendors. They
might help out if you get stuck.1 Find email addresses in:

copyright statements

git log

mailing list archives

Be respectful! Do not ask questions which require tedious work to
answer. Contact them once your driver is almost working and
demonstrate one specific problem you are stuck with. Send your
source code files along.

1rtsx(4) and iwm(4) would still be stuck without such help
OpenBSD Device Drivers 15/46



Submitting diffs

Send your working driver diff to tech@openbsd.org
Some people may respond in private, some prefer to Cc the list.
Respect their choice and reply accordingly.
Avoid common pitfalls:

Diffs should be against -current CVS

Diffs should be mailed inline. No attachments.

Do not send mangled diffs. Mail the diff to yourself and apply
it with patch(1) before mailing tech@ for the first time.

If you don’t get any feedback, follow up to on your own thread
after one week.

OpenBSD Device Drivers 16/46



Extra things which need testing

Avoid regressions. If the driver already supports other devices:

Try to obtain these devices cheaply and test them yourself

Ask tech@ for tests of your finished diff with specific devices

Do not break snapshots!

Run your diff through ‘make release’ – see release(8)

Test a bsd.rd install or upgrade with your diff applied

If your diff breaks the release build and upgrade cycle Theo cannot
get work done and will be rightfully annoyed at you.

OpenBSD Device Drivers 17/46



Maintenance

Your project is not done once your driver is in the tree

Stay around and respond to questions and other feedback

Be prepared for your diff being backed out in case of problems

You may not be able to fix every bug right away
After backout, take your time to make things right

Try hard to reproduce bug reports locally

Some bugs only affect particular machines
Ask machine owners for help

Some people in the community file useless bug reports

Keep asking for more information until problem is reproducible
If they don’t provide it, it’s not your problem (avoids burnout)

OpenBSD Device Drivers 18/46



Coding style

Make sure your driver code looks like every other driver in the tree.
Consistency is important.

follow style(9)

fixed-width integers in new code should use C99 type names

e.g. use uint8 t rather than u int8 t

prefix all symbols with driver name (e.g. rtwn )

no static functions in the kernel

use very few .c files per directory

use *var.h header for driver-specific declarations

function declarations
structs for software state

use *reg.h header for device-specific definitions

register offsets
packed structs for descriptors and commands

OpenBSD Device Drivers 19/46



Technical topics

OpenBSD Device Drivers 20/46



Device framework

Devices are organized in a device tree displayed by dmesg(8).
Device tree is managed by autoconf(9) framework.
The device tree contains one instance of your driver per device.
Drivers implement the following callbacks in struct cfattach:

ca match(): match device

hardware-specific port probing, e.g. in pms(4)
PCI vendor/product ID
USB vendor/product ID

ca attach(): initialize driver state

ca detach(): free resources and reset driver state

ca activate(): used for suspend/resume

OpenBSD Device Drivers 21/46



Driver software state data structure
Each instance of the driver gets its own global software state called
the softc. Declare it in your driver’s *var.h header file and add
any flags and variables which will be shared between functions. The
cn attach() function will receive a pointer to an allocated softc.
Example for a fictional device driver xyz(4):

struct xyz_softc {

struct device sc_dev;

bus_dma_tag_t sc_dmat;

bus_dmamap_t sc_dmap;

uint32_t sc_flags;

#define XYZ_F_HAS_RNG 0x01 /* supports random numbers */

#define XYZ_F_JUMBO 0x02 /* supports jumbo frames */

};

The first softc struct member must be of type ’struct device’. This
will be pre-populated with information such as the driver instance’s
name string (sc dev.drv xname), i.e. ”xyz0”, ”xyz1”, etc.

OpenBSD Device Drivers 22/46



Adding new device IDs

The first step is to make your device known to the kernel.
Use pcidump(8) or usbdevs(8) to find your device’s ID.
To add a new PCI ID:

go to /usr/src/sys/dev/pci/

edit pcidevs file

run make to regenerate the PCI device list

rebuild the kernel

Works accordingly for USB.

OpenBSD Device Drivers 23/46



Device Registers

A “device register” is a small unit of memory inside the peripheral
device. Each register has an address and a specific purpose. Its
contents control or report some behavioural aspect of the device.
Generally, there are:

config registers (configure some aspect of device)

control registers (tell device to do something)

status registers (information provided by device)

Registers may be 8, 16, 32, or 64 bits wide.
Individual bits in registers may be

read-only / write-only / read-write

clear-on-read / clear-on-write

Register byte order can be big or little endian. Converting from/to
host byte order is the driver’s responsibility.

OpenBSD Device Drivers 24/46



Device Register Documentation

Register documentation is a programmer’s device user manual.
Knowing the “register map” is a pre-requisite for writing a driver.
It is documented in:

1. any half-decent data sheet

often secret or only available under NDA :-(
sometimes, leaked copies can be found on the web

2. source code of other open source device drivers

derived from documentation or reverse-engineered
comments sometimes document behaviour of the device

OpenBSD Device Drivers 25/46



Device Register I/O

Identify device registers and their bits via macros.
See sys/dev/ic/*reg.h for examples.
Access device registers via:

bus space(9) read/write abstraction API

memory-mapped I/O (e.g. PCI devices)
port-mapped I/O (e.g. legacy x86 I/O devices)

device- or bus-specific transactions

USB devices generally accept commands to read/write registers
device may provide some registers via firmware commands only
device may provide indirect access to some registers only

I write the address of register X to register R1
I now read the current value of register X from register R2

OpenBSD Device Drivers 26/46



Polling

Some device registers must be polled, usually during initialization
of device, before interrupts are active.

write a register to request an operation

keep reading a register until its value indicates success
Implemented as a for or while loop:

read register
test its value; exit loop if successful
busy-wait with DELAY(9)
Eventually, after some amount of loop iterations, give up

Polling blocks the entire system. Don’t overuse it.
Example: rtwn fw reset() in sys/dev/ic/rtwn.c

OpenBSD Device Drivers 27/46



DMA (Direct Memory Access)

Using register I/O for large data transfers wastes CPU time.
With DMA we instruct the device to perform a memory read/write
transfer autonomously and asynchronously.
bus dma(9) API will allocate a block of memory below the 4GB
boundary and:

1. map it into kernel virtual address (KVA) space

2. configure the IOMMU, if present, to allow device access to
this block of memory

DMA buffer is usually filled/consumed by layers above the driver.
Any such access to the buffer is via the virtual address.
Driver needs to:

tell device about physical address and size, e.g. via registers

start the DMA transaction, then sleep or return

handle interrupt at end of transaction

See bus dma(9) for pseudo code and further information.

OpenBSD Device Drivers 28/46



Sleeping

Drivers often need to wait for some operation to finish, e.g.

waiting for firmware to load

waiting for data read/write to complete

waiting for a firmware command to complete

Use tsleep(9) to “go to sleep” and wait. Sleeping requires a
process context. The current process2 will be suspended and the
scheduler will select another process to run.
Use wakeup(9) to wake the sleeping thread (i.e. mark it runnable
for the scheduler). Usually done from interrupt context where
completion of the pending operation is signalled by the device.

2kernel threads are processes, too
OpenBSD Device Drivers 29/46



Interrupts

Interrupts allow communication from device to driver.

Driver provides a function pointer to bus code

See pci intr establish(9) and usbd setup xfer(9)

This function is called when device signals an interrupt

Function reads status from device and acts on events

”I have loaded my firmware”
”I have received a packet”
”I am done writing data”
”I have encountered a fatal error”

The function may call wakeup(9) to wake a sleeping process

The function cannot sleep!

No tsleep(9)
No malloc(9) without M NOWAIT

Example: rtsx intr() in sys/dev/ic/rtsx.c

OpenBSD Device Drivers 30/46



Timeouts and Tasks

Timeouts and tasks can both create driver ’threads’.
Schedule a timeout if:

an action needs to occur after some time has elapsed

e.g. reset device if a command times out

an action needs to occur periodically

e.g. device needs regular calibration while operating

Schedule a task if:

an interrupt needs to trigger code that must sleep

e.g. must run another command and wait for response

a dedicated thread of execution is required to handle events

e.g. SD card insertion/removal thread

See timeout add(9) and task add(9).
The USB stack has its own task API; see usb add task(9).

OpenBSD Device Drivers 31/46



Configuration from userspace

Configuration requests from userspace arrive via ioctl(2).

Triggered by ifconfig(8), bioctl(8), audioctl(1), ...

Driver’s ioctl handler runs before the upper layers

Perform configuration change
Perhaps pass request to upper layers

ieee80211 ioctl(9), ifioctl(), ...

Indicate success or failure

Driver’s ioctl handler can sleep since it runs in the context of the
process which made the ioctl system call.
The ioctl handler can trigger at any time and race interrupts,
timeouts, and tasks. Software bugs thrive in such conditions!

OpenBSD Device Drivers 32/46



SPL (System Priority Level)

The priority level of an interrupt is set when the interrupt handler
is registered. Several levels are defined, see spl(9).
Drivers use the SPL to block interrupts from their device and any
other interrupts of the same or lower priority.
Drivers commonly use:

spltty: block interrupts from terminal devices

splnet: block interrupts from network interfaces

splbio: block interrupts from mass storage devices

splsoftnet: block packet processing in network stack

ALways raise the SPL before accessing data structures which are
also accessed by an interrupt handler.
Afterwards, restore the previous level with splx(9).

OpenBSD Device Drivers 33/46



Refcounting tasks and timeouts

The reference-counting API can be used to keep track of tasks:

Each task must call refcnt rele wake(9) before exiting

Call refcnt init(9) while no tasks are running

Call refcnt take(9) before task add(9)

If task add(9) returns zero, call refcnt rele wake(9)

If task del(9) returns non-zero, call refcnt rele(9)

All running tasks are now reference-counted.
To stop all tasks, e.g. in the ioctl handler:

Use task del(9) to remove all pending tasks from the queue

If task del(9) returns non-zero, call refcnt rele(9)

Call refcnt finalize(9) to sleep until all running tasks are done

The last task exiting will wake refcnt finalize(9)

This also works with timeouts.

OpenBSD Device Drivers 34/46



Firmware

Use loadfirmware(8) to load firmware files from /etc/firmware.
You need a process context for this.
Pay attention to the licence of firmware files!

If firmware is distributable without restrictions it can go into
the base system; see /usr/src/sys/dev/microcode/

If distribution is restricted3, firmware will be banished to ports

Create or modify a firmware port; see
/usr/ports/sysutils/firmware/

fw update(8) will install firmware on systems which need it

If distribution rights are unclear, email the hardware vendor and
ask. Keep an archived copy of any replies for future reference.

3Including any restrictions of your rights, such as the right to modify or
reverse-engineer

OpenBSD Device Drivers 35/46



Suspend/Resume

If you don’t implement suspend/resume, some laptops might not
suspend/resume anymore. This will be treated as a regression.
Implement a config activate(9) handler. It will be called with:

DVACT QUIESCE – suspend is imminent; you can still sleep

DVACT SUSPEND – suspending; you cannot sleep

save register state to memory here and/or stop device

DVACT RESUME – resuming; you cannot sleep

restore register state from memory here and/or restart device

DVACT WAKEUP – resuming; you can sleep4

Upper layers are already paused when your handler runs.
USB devices will be detached upon suspend.
Examples: rtsx activate() in sys/dev/ic/rtsx.c

iwn activate() in sys/dev/pci/if iwn.c

4sleeps in the acpi thread
OpenBSD Device Drivers 36/46



Debugging

OpenBSD Device Drivers 37/46



Debugging drivers

You will earn more experience in debugging than you ever wanted.
Expect vastly more time spent on debugging than writing code.

If possible, get a serial console

Learn how to use ddb(4)

boot bsd.gdb5 to get line numbers in ddb(4)!

printf(9) adds latency which can hide race condition bugs

frequent printf(9) calls will lock up your machine

You can break into ddb to set your driver’s print debug level:

ddb> set iwm debug = 2

ddb> continue

Can’t find the problem? Try harder...

Found the problem? Here’s another...

5can be found at compile/GENERIC.MP/obj/bsd.gdb
OpenBSD Device Drivers 38/46



Tracking down bugs

The bugs will usually be in your code and obvious in hindsight.
I have spent hours tracking down in my code:

uninitialized variables; undefined behaviour

logic errors; code does not do what was intended

bad length calculations; off-by-ones

typos and copy-paste errors

use after free

race conditions

bits written to registers inverted

undocumented register bits that need to be set

Search starts out based on erratic hardware behaviour. A good
strategy is to stop thinking and look. Ignore things you believe you
already know. Find and observe facts.

OpenBSD Device Drivers 39/46



Some example bugs (1/2)

Obvious in hindsight...

rtwn(4)

iqcal code wrote garbage stack memory to registers due to
incorrectly scoped struct variable (caught by clang -O2)
8192CE baseband initialization values got an extra copy-pasted
line during refactoring merge with urtwn(4); radio was deaf
must wait for firmware to boot or accessing PCI config space
registers will hang entire machine (such quirky hardware)

rtsx(4)

asked hardware to transfer 0 bytes per sector instead of 512
asked hardware to read when we wanted to write and vice versa

OpenBSD Device Drivers 40/46



Some example bugs (2/2)

xhci(4)

isochronous transfer used remaining length of N-1 descriptors
where remaining length of N descriptors was needed; the last
descriptor which has the “interrupt on completion” flag was
not processed – hence no interrupt

iwm(4)

did not set a bit which makes 8260 device send one interrupt
per received frame; bit definition had already been deleted from
Linux code and was hard to find (their driver doesn’t need it)
asked hardware to send ACK frames at fast (a.k.a. fragile)
data rates; the AP missed most ACKs and retried excessively

OpenBSD Device Drivers 41/46



See also other people’s presentations

OpenBSD Device Drivers 42/46



Other people’s presentations (1/2)

https://www.openbsd.org/events.html

Mike Belopuhov

Implementation of Xen PVHVM Drivers in OpenBSD (2016)
OpenBSD Kernel Architecture, Network Stack (2008)

Vladimir Kirillov

OpenBSD Kernel Internals: The Hitchhiker’s Guide. (2009)

Jason L Wright

Hardware Is Wrong, or ”They can Fix It In Software”. (2008)

Theo de Raadt

Hardware Documentation (2007)

Jonathan Gray

Driver architecture and implementation in OpenBSD (2006)

OpenBSD Device Drivers 43/46

https://www.openbsd.org/events.html


Other people’s presentations (2/2)

Constantine A. Murenin

OpenBSD Hardware Sensors Framework (2009)

Claudio Jeker

OpenBSD Network Stack Internals (2008)

Marc Balmer

Support for Radio Clocks in OpenBSD (2007)
Support for Time Signal Station Receivers and GPS in
OpenBSD (2006)

David Gwynne and Marco Peereboom

bio and sensors in OpenBSD (2006)

Niall O’Higgins and Uwe Stuehler

Embedded OpenBSD (2005)

OpenBSD Device Drivers 44/46



Further reading

OpenBSD drivers for similar devices

Drivers for your device on other open source systems

Man page recommendations:

style(9), autoconf(9), pci intr establish(9), pci make tag(9),
usbd transfer(9), usbd open pipe(9), usbd close pipe(9),
spl(9), tsleep(9), wakeup(9), usbd ref wait(9), refcnt init(9),
timeout(9), task add(9), usb add task(9), loadfirmware(9),
kern(9), dohooks(9), copy(9), bpf mtap(9), ieee80211(9)

Driver development books for other systems6 can help where
concepts translate well. However, other systems tend to be
more complicated...

6There is none specific to OpenBSD :(
OpenBSD Device Drivers 45/46



Thank you for listening!

Questions?

OpenBSD Device Drivers 46/46


