Hardening Emulated Devices In
OpenBSD’s vmd(8) Hypervisor

fork&
exec&
fork&
exec.

Dave Voutila <dv@openbsd.org>, AsiaBSDCon 2023

mailto:dv@openbsd.org

Dave Voutila (dv@)

Vermont %, USA =
(40 mins from Québec 1)

Hypervisors as High Value Targets

Why do you rob a bank? It’s where the money is.

» Shift to multi-tenant public cloud means target rich environments
e |fit’s networked, it’s vulnerable.
 Pop one ESXi instance, now you own many systems

* “it’'s ok, ’'m running it in a vm”

A Potpourri of CVE’s

Some classic guest-to-host escapes

« QEMU

 CVE-2015-3456 — “VENOM”

» aka the QEMU floppy disk one

« CVE-2015-7504 — network device escape
 VMWare

» CVE-2020-3967 — EHCI heap overflow
 OpenBSD

« DHCP packet handler stack overflow (6.8, 6.9)

VENOM

VIRTUALIZED ENVIRONMENT NEGLECTED OPERATIONS MANIPULATION

CC BY-SA 4.0, Crowdstrike

https://www.cve.org/CVERecord?id=CVE-2015-3456

Emulated Devices are the Problem

When in doubt, cut it out. 5°

* By definition, always handling untrusted (guest) input

* Need read/write to guest physical memory

 Need read/write to host interfaces (network, files, etc.)

 Emulating in kernel is asking for trouble, so commonly done in userland

* In OpenBSD, only pvclock(4) is handled in the kernel (vmm(4))

Multi-process QEMU

First Type-2 open source hypervisor doing this?

 QOracle started work in 2017, landed in QEMU December 2020

* Elena Ufimtseva, Jag Raman, John G. Johnson

» https://lists.gnu.org/archive/html/gemu-devel/2020-12/msg00268.html

e _..but, who uses it?

* |I’d presume Oracle Cloud
(V)%
 Documentation is primarily about design, future ideas, & not present day usage.

» Additional burden placed upon the poor administrators &

https://lists.gnu.org/archive/html/qemu-devel/2020-12/msg00268.html

vmm(4) / vmd(8)

OpenBSD’s native hypervisor

Originally released with OpenBSD 5.9 by mlarkin@ & reyk@

Currently amd64 only with support for both amd64 and i386 guests

Adopted privilege separation design

* fork+exec —> chroot(2) & pledge(2)
e drop from root to _vmd
Components

« vmm(4) — in kernel monitor

« vmd(8) — userland daemon

 vmctl(8) — userland control utility

ork+exec /fork+exec \fork+exec

vind

fork+exec

agenD

vmd(8) gaps & weaknesses

Room for improvement

* vm process is fork(2)’d from the vmm process, without execv*(2)
 Every vm gets same address space layout
 Every vm has junk left over from vmm process (global state)
* vm process isn’t chroot’ed & vmm process isn’t running as root
* vm process has multiple pledge(2) promises beyond “stdio”
* “recvfd” — vm send/recv

* “vmm” — vmm(4) ioctl for vcpu, interrupts, registers r/w

Existing Synthetic Mitigations

A house Is only as good as its foundation.

» ASLR — force attackers to need info leaks (3.4)
« RETGUARD — control flow integrity (6.4 for amdc4?)
* pledge(2) — minimize syscalls available to attackers (5.9)

* unveil(2) — hide parts of the file system without root (6.4)

* In—-current and landing as part OpenBSD 7.3:
« mimmutable(2) — prevent changing page permissions or mappings
* pinsyscall(2) — minimize allowed call point for syscalls like execve

e execute-only — enforce execute-only on .text to prevent ROP (amd64 via kernel PK

Step 1: fork+exec for each vm

Minimizing info leaks across vm’s

o Switch vmm process from just fork(2) to: fork(2) + execvp(2)
« Easy wins |
* Reuse socketpair for IPC between vmm proc and vm

o Simply pass the fd number for the channel in argv

e Headaches s

* vmm process needs absolute path to vmd executable

 vm process can’t rely on existing global state for configuration

Step 2: Isolate the VirtlO Device

“Breaking up is hard to do.” — the Oracle Blog post

 vmd uses multiple vm_mem_ranges (bios/reserved, mmio, regular)

 The approach:

« shm mkstemp(3) — create temporary file for mapping shared
memory

e ftruncate(?2) & shm unlink(3) — size and remove the temp file

e fcntl(2) — set the fd to not close on exec

 mmap(2) guest memory ranges MAP_SHARED | MAP_CONCEAL

* Pass the fd number after exec & re-mmap vm_mem_ranges

http://man.openbsd.org/shm_mkstemp
http://man.openbsd.org/ftruncate
http://man.openbsd.org/shm_unlink
http://man.openbsd.org/fcntl
http://man.openbsd.org/mmap

Step 3: Wiring up RPC

Here’s a dime...call someone who cares.

 Sync Channel

* Bootstrapping device config post-exec
» Virtio PCI register reads/writes
* Async Channel
» Lifecycle events (vm pause/resume, shutdown)
» Assert/Deassert IRQ
e Set host MAC (vionet)

Putting i1t all Together

Sorry for my artwork %,
vind

ork+exec /fork+exec \fork+exec fork+exec

@ G () G
Y=y,

High-level Message Flow

Sorry for my artwork %

M
1. Guest fills buffers, @ P
updates virtqueues, etc. \Hr\

2. Guest writes to Device

register via 10 instructions @

3. Device is notified it can \

process data. Writes it to |

fd. VA
4. Device kicks guest via

vcpu interrupt to notify \

buffers are processed L@ @ |
\

Security! But at what cost?

What about the user/admin experience? Does it change?

e OpenBSD 7.2

e #vmd -d

 # vmctl start -Lc -d disk.raw -m 8g guest
* Prototype

e #vmd -d

 # vmctl start -Lc -d disk.raw -m 8g guest

Security! But at what cost?

What about the user/admin experience? Does it change?

Security! But at what cost?

What about the user/admin experience? Does it change?

* OpenBSD 7.2

* #vmd -d

» # vmctl start -Lc -d disk.raw -m 8g guest
* Prototype

* #vmd -d

» # vmctl start -Lc -d disk.raw -m 8g guest

Security! But at what Cost?

vmd(8) has room for performance improvement

e zero-copy virtio added only recently

* single emulated device thread handles all async io
* virtio PCIl devices — network, disk, cdrom
* Ns8250 serial device
e 18253 programmable interrupt timer

 Mutexes guard device state from competing vcpu & event threads

Quick & Dirty Benchmarking

This is not a benchmarking talk &

* Lenovo X1 Carbon (10th gen
 12th gen Intel i7-1270P @ 2.2 GHz
» 32 GiB RAM
1 TB NVME disk
 Guest Operating Systems
e OpenBSD 7.2

e Alpine Linux 3.7 (kernel vTKTKT)

vioblk(4) benchmark

fio(1) [ports] performing 8 KiB random writes to 2GiB file for 5 minutes

* Very Ilttle dlfference In Host Guest Throughput| clat avg clat stdev | 99.90th % 99.95%
throu g h D ut Version Version MiB/s (usec) (usec) (usec) (usec)
y Ivetry ittle difference in | OpenBSD- | OpenBSD- | g 4 89.9 | 8730 338 379
dtency
: : O BSD-
 Long-tail shghﬂy Prototype l?jrr]rent 100 76.4 7220 388 429
worse on Alpine??
OpenBSD- Alpine
current Linux 3.17 131 1.2 934 32 38
Alpine
Prototype Linux 3.17 132 11.7 682 594 685

vio(4) benchmark
iperf3(1) [ports] with 1 thread run for 30 seconds, alternating TX/RX

e perf(3) used with 1 Host Guest Receiving Sending
thread in alternating Version | Version Bitrate Yo Bitrate %
client / server modes (Mbit/s) (MBit/s)
. OpenBSD
e Observations -current 25 0.86 — 1.26 —
* More consistent
throughput in prototype Ope7r.128 SD 1.22 63% 1.35 7%
OpenBSD guests
* Negligible -current Alplge1l;|nux 1.26 — 4.26 —
performance
decrease for Linux Albine L i
pine Linux
guests (not sure why) prototype 317 1.30 5% 3.19 -25%

Headaches!

Some things weren’t so easy. ©

* Dual-channel connectivity

* synchronous register io from vcpu thread needs to avoid deadlocks
e vCcpu Vvs. event thread isolation

* libevent(3) is not thread-safe (OpenBSD bundles v1.x)
 Debugging multi-process, async code is often challenging

e printf & ktrace can quickly generate lots of noise

* nanosleep(?2) + gdb attaching directly to device process helps

Future Work & Research
Plans for the next hackathon (m2k23) _

Finish lifecycle cleanup (vm send/receive)
QCOW?2 disk support — only supports raw images at the moment
Begin merging changes into tree after 7.3 release
* vm fork+exec dance
* vioblk
* vionet
Expand to other devices
* Ns82507
Tighten exposure of guest physical memory

e guest aware drivers? (is there anything to gain by limiting how much of guest memory we remap?)

Thanks!

See you in Ottawa?

