
Bidirectional Forwarding Detection (BFD) implementation and support

in OpenBSD

Peter Hessler

phessler@openbsd.org

OpenBSD

1 Introduction

Internet links fail. This is a truism as old as Internet links. When a link fails, traffic gets dropped until the fail-

ure is detected and traffic can be re-routed. Detection of failures can be quite tricky however, since they are not

always directly visible. Most systems use link state or a form of keep-alives for detection of failures. Link state

detection does not help when there are active devices between a router and the other system, such as a switch or

long distance links which use MPLS. The in-protocol BGP timers can also be quite long (commonly 90 seconds)

which is a lot of traffic when one are sending 10Gbps or even faster rates.

Bidirectional Forwarding Detection (BFD)1 is a protocol that allows detecting faults in links or routes. This is

similar to GRE keep-alives, but is actually supported on real routers. Contrary to traditional link-state detection,

BFD works on the next-hop IP address; so one can detect failures of some peers that do not affect the link state.

BFD is a protocol that exists outside of existing routing protocols, but can communicate the status to all pro-

tocols. This allows for a single keep-alive to detect the health of a single link, without having to depend on a

keep-alive in each and every protocol being used. As this is part of the ”parent” interface, this does not introduce

another layer in the network configuration. And since the link-state is only per next-hop IP, one can mix and match

BFD and non-BFD neighbours on the same interface. This is extremely useful for routers connected to an Internet

Exchange Point, which can have hundreds of peers spread over 10 or more physical locations.

This paper discusses of the implementation of the BFD protocol for OpenBSD, problems discovered in both

the protocol and network stack, use cases and production experience.

1.1 Before BFD

In general, Ethernet is supported over two types of physical links, one is copper and the other is fiber. When the

connection is established between two physical devices, power is applied and either an electrical current is sent

over copper, or light is sent over a fiber link. While the link-state is based upon receiving the current or light, it

does not indicate that the remote side is configured, or is capabable of processing traffic received. Unlike other

link protocols, Ethernet does not communicate the availablity of services over this link. As such, detecting failures

is dependent on protocols that are layered upon Ethernet. Even with the limitations of positivly stating the link is

available, the loss of link-state is a guarentee that the link is not usable. When the link-state of an interface goes

down, routing protocol daemons may decide to mark that interface as ”down” and to do whatever the protocol

may require. However, this depends on the link-state being fully in-sync with the availabilty of the remote peer.

In an IXP2 environment, switches are guarenteed to be in path which will prevent the link-state to a neighbor from

being seen as down.



BGP3, for example, sends a KEEPALIVE message to ensure the connection is still live. Three KEEPALIVES

must fail to be received before the neighbor is marked as down. These messages are traditionally sent every 30

seconds, and so requires 60 to 90 seconds before an outage can be detected. At the fastest, BGP may only send

KEEPALIVE messages every second, so outages still require 3 seconds to be detected. As an example, when a

link has a sustained traffic flow of 10Gbps, the loss can be up to 900 Gb of data which is an unacceptable amount

of traffic to be lost due to a faulty link. Additionally, voice calls can suffer between 60 and 90 seconds of silence

which will cause users to think the call is lost.

OSPF4 keepalives may be sent as fast as 50 milliseconds, but still require no response for 1 full second to

detect the failure of an OSPF speaker. An astute reader will also notice that both protocols need to send their own

keep-alive traffic, which is wasteful.

Other protocols have their own methods, which must be independently monitored, transmitted, and received.

2 BFD Protocol

The BFD protocol is relatively simple. If replies are not received with a negotiated amount of time, the link is

declared dead and is not used. It is generally encapsulated in a UDP packet, but may be encapsulated in any other

protocol, that is sent from one system to a direct neighbor. This neighbor copies some values from the packet that

is sent, then a reply is sent.

As BFD checks the forwarding plane of a device, it is intended to be sent, and checked, from the forwarding

engine. This ensures that if the system cannot forward packets, then it no longer sends BFD packets.

There are two types of BFD packets.

Control: Packets that are encapsulated appropriately to the environment, and meets the Mandatory format as

specified in RFC 5880. Control packets may have one of two modes.

Async: Control packets are sent on a timer.

Demand: The decision to send control packets is implementation specific. A common method is to monitor

the received packets counter. If no packets are received during that timer, then a control packet is sent.

Echo: The sender sends any information it wants, and the receiving system is supposed to copy it and send the

information back without modification.

The timers used are in microseconds, which is one millionth of a second. A multiplier is used to detect failures

to receive, which may be as low as 1. These two features, when configured to their most aggressive, means a link

failure can be detected in as little as two microseconds.

There is an optional Authentication section, which is intended to allow the receiving system to determine the

validity of the received packet. As we will see later, the Authentication section is problematic, so we do not im-

plement it.

2.1 BFD: Control Packets

BFD Control packets are fixed binary format, sent in network byte order.

Version: a version number

Diagnostic Code: reason for the last change in session state.

State: the current state of the session.



Flags: Poll, Final, Control Plane Independent, Authentication Present, Demand, Multipoint. These indicate vari-

ous flags for this packet in the session. Certain flags may not be combined, and other flags have other restrictions.

Length: the byte length of the BFD Control packet.

My Discriminator: A unique value generated by the transmitting system used to demultiplex multiple sessions

between the same pair of systems.

Your Discriminator: The value received from a remote system.

Desired Minimum TX Interval: Minimum interval that we would like to use, in microseconds.

Required Minimum RX Interval: A remote system must send control packets faster than this value, in mi-

croseconds.

Required Min Echo RX Interval: If a system supports echo packets, this is the minimum interval a remote

system may send, in microseconds.

2.2 BFD Authentication

Authentication in BFD is simplistic. In the optional header, there is normal boilerplate, then a sequence number

and the auth hash. A pre-shared-secret is placed in the area for the hash, then the entire packet is hashed according

the Authentication Type. All hashing methods have a normal mode, and a mode called “meticulous”. In normal

mode, the sequence key is incremented occasionally. In meticulous mode, the sequence key must be incremented

for each packet.

If authentication is supported implementations are required to support both modes for SHA1. The Authentica-

tion features of BFD have been critisized in RFC 6039 and RFC 7492. No higher quality hashing algorithms are

standardized at this time.

3 Using BFD

For this section, I use 203.0.113.1 as my IP address, 203.0.113.9 as my neighbor’s IP address. You may use any

IPv4 or IPv6 address in place of those.

Enabling BFD on OpenBSD is currently a single command: route -n change 203.0.113.9 -bfd. At

this moment, all options cannot be changed from the defaults. However, we can negotiate most options with a

neighbor.



Showing the current configurations is available using route -n get 203.0.113.9, and state changes are
sent over the routing socket, so are visible in router daemons or in route -n monitor. Detailed information for
the output is available with the -bfd flag as shown below.

$ route -n get 203.0.113.9 -bfd

route to: 203.0.113.9

destination: 203.0.113.9

mask: 255.255.255.255

interface: em1

if address: 203.0.113.1

priority: 4 (connected)

flags: <UP,HOST,DONE,LLINFO,CLONED,BFD>

BFD: async state up remote up laststate down error 0

diag none remote neighbor-down

discr 186919089 remote 55

uptime 05d 2h07m29s

mintx 1000000 minrx 1000000 minecho 0 multiplier 3

use mtu expire

83923 0 229

sockaddrs: <DST,GATEWAY,NETMASK,IFP,IFA>

The BFD state is communicated via the routing socket to allow userland utilities to make decisions, but cur-

rently does not change the UP or DOWN state of the route itself.

OpenBSD is able to successfully negotiate and keep sessions for at least 7 days against several vendors includ-

ing Juniper, Cisco, Force10, and Extreme Networks.

4 OpenBGPD

OpenBGPD5 currently has simple support for BFD. At the time of publication, it knows when a BGP neighbor is

monitored with BFD, and will immediately mark the nexthop IP address as DOWN when told by BFD.

5 Future Work

Future work on this topic include implementing multi-path sessions, Seamless BFD6 , and extending the integra-

tion into OpenBSD’s networking daemons such as ldpd, ospfd, eigrpd, etc. Implementation of the BFD protocol

encapsulated in ospf, vxlan, ldp, and other protocols is also desirable.

An expired Internet Draft draft-ietf-idr-rs-bfd7 introduces automagic configuration of BFD between

parties allowing for stronger resilience when there are many potential neighbouring networks without the overhead

of manual configuration. It was influencial in my interest in this technology, so it will be re-evaluted and possibly

implemented.

6 Availability

Unless otherwise noted, the implementation described in this paper is available in OpenBSD -current, and will be

part of the 6.1 release, currently expected in May 2017.

Notes

1 RFC5880, D. Katz, and D. Ward, ”Bidirectional Forwarding Detection (BFD)”, June 2010
2 Internet eXchange Point
3 RFC4271, Y. Rekhter, T. Li, and S. Hares, ”A Border Gateway Protocol 4 (BGP-4)”, January 2006



4 RFC1247, J. Moy, ”OSPF Version 2”, July 1991
5 bgpd(8), bgpd - Border Gateway Protocol daemon, OpenBSD manual pages
6 RFC7880, C. Pignataro, D. Ward, N. Akiya, M. Bhatia, and S. Pallagatti, ”Seamless Bidirectional Forwarding Detection (S-BFD)”, July

2016
7 draft-ymbk-idr-rs-bfd, R. Bush, J. Haas, J. Scudder, A. Nipper, and T. King, ”Making Route Servers Aware of Data Link Failures at

IXPs”, July 2015


