Copyright © 2015 Pascal Stumpf

Permission to use, copy, modify, and distribute this work for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

Converting OpenBSD to PIE

Pascal Stumpf

ABSTRACT

Position-independent executables (PIEs) are the last step on the journey to a fully randomised address space on
OpenBSD, with the goal of providing improved defense against return-oriented programming. This paper
details the measures undertaken to successfully make this conversion on a broad, system-wide scale. It also pro-
vides a perspective on both the future of practically deployed ROP mitigations and the prevalence of such fea-
tures (including PIE) on other operating systems, such as *BSD, Linux and Windows.

Return-oriented programming

With the advent of data execution prevention
techniques in most common operating systems,’
exploit writers have turned to return-oriented pro-
gramming (ROP) to circumvent these measures.?
Instead of relying on the ability to simply execute
uploaded shellcode, ROP utilises existing code
present in either shared libraries or the executable
itself. Diverting the main program’s control flow,
the attacker overwrites the return address with an
address inside the program or a library, executing
the code in the specified location until a return
instruction is encountered, jumping to the next
attacker-controlled location.® These chunks of code
are commonly called ‘gadgets’.

By chaining together these gadgets, the attacker
will want to execute a meaningful piece of code,
e.g. execute /bin/sh or open a network socket.
Thus, it is desirable to, given a sufficiently large and
commonly used body of code (such as libc), collect

1. See for instance on details of the OpenBSD W*X
implementation:
http://www.openbsd.org/papers/ven05-deraadt/index.html

2. http://seclists.org/bugtraq/1997/Aug/63

3. First generalised from using whole functions by Shacham
(2007).

gadgets that allow for Turing-complete functional-
ity. While the attacker is restricted to intentional
return-and-restore instructions on architectures
with a fixed instruction length (such as sparc64),
x86 allows for interpreting any sequence of 0xc3 as
a ret instruction.’ Furthermore, the use of ret has
been demonstrated to not be required.® Using this
knowledge, the process of ‘gadget-mining’ consists
of searching for (intended and unintended) ret or
jmp opcodes and trying to find a usable preceding
instruction sequence. Automated tools are avail-
able for this task.’

Countermeasures: ASLR

It is obvious that ROP is threat to be taken seri-
ously by both application writers® and operating
system vendors. One commonly deployed defense
mechanism is address space layout randomisation
(ASLR). By randomising the location of code

Buchanan et al. (2008), p. 29.

Roemer et al. (2012), p. 6f.

Checkoway et al. (2010).
https://github.com/JonathanSalwan/ROPgadget

Most recently, see src/lib/libssl/src/crypto/x86¢puid.pl,
Revision 1.4 in the OpenBSD source tree. The
OPENSSL _indirect_call function is still present in
upstream OpenSSL as of 27. Nov. 2014.

® N s

Pascal Stumpf

segments on subsequent binary invocations, it is no
longer possible for an attacker to easily predict the
location of the desired gadgets. OpenBSD has
shipped with random library ordering and random
library base addresses for more than a decade.’

Introducing PIE

But while these mitigations counteract any attack
that tries to make use of library code, the exe-
cutable itself remained at a fixed position for a long
time: The PIC model that allowed randomisation of
shared libraries was not available for the exe-
cutable. This changed when support for the -fpie
and -fPIE flags was added to the GNU Compiler
Collection,'? and the -pie flag to GNU Binutils, !
respectively, and the project to support position-
independent executables in OpenBSD was taken up
by Kurt Miller.'> Subsequently, support for compil-
ing, linking, running and debugging PIE executa-
bles was added to the system and included in the
4.5 release on almost all platforms.

Effort to deploy PIE on a system-wide basis with
very few exceptions was also started. It was taken
up again at the g2k12 hackathon, where an initial
assessment of the impact on third-party applica-
tions (the OpenBSD ports tree) as well as the
OpenBSD build system was made. With ‘security
by default’ being one of the project’s main goals,
the approach taken was naturally to alter the
toolchain to generate position-independent executa-
bles by default without the need to pass any further
flags to the compiler invocation.

The implementation in OpenBSD’s copy of GCC
is straightforward: Depending on the architecture,
the build system passes the default value of the
flag_pie variable (1 for the small -fpie, 2 for the big
-fPIE model, required on sparc64, powerpc and
alpha), with profiling code (-p, -pg) being the only
exception. The linker, too, was converted to gener-
ate PIE executables by default on PIE architectures.
This also made it necessary to introduce a new
option, called -nopie, to turn off PIE if needed. But
soon it was discovered that this new default had
unexpected side effects: Given the command line
‘cc -fno-pie -static foo.c -o foo’, ‘foo’ would end up
being dependent on the runtime linker 1d.so. While
these are technically the correct semantics (-static
meaning ‘link libraries statically’, not ‘generate a
static executable’), it was decided that making

9. http://www.openbsd.org/34.html

10. https://gce.gnu.org/ml/gec-patches/2003-06/msg00140.html
11. https://sourceware.org/ml/binutils/2003-05/msg00832.html
12. http://www.openbsd.org/papers/nycbsdcon08-pie/

Converting OpenBSD to PIE

-static imply -nopie would be less astonishing to
the average user.

PIE is switched on globally depending on archi-
tecture.'® The 5.6 release has shipped with the fol-
lowing architectures using PIE by default: alpha
amd64 hppa 1386 mips64 mips64el powerpc sh
sparc64, which comprise the majority of those sup-
ported by OpenBSD.

Non-PIE components of the base sys-
tem

Relocation of binaries is dependent on the run-
time linker. Therefore, there are several code seg-
ments in the system which cannot be relocated this
way as they must continue to function indepen-
dently. This includes the early bootstrap code, the
kernel, and, before the 5.7 release, static binaries.
For the former two, it was simply a matter of
adding the correct flags to the Makefiles
(CFLAGS+=-fno-pie, LDFLAGS+=-nopie), while
in order to mark specific userland binaries as
non-PIE, a switch called NOPIE (analogous to
NOPIC) was added, which automagically sets the
correct flags.

As of the upcoming 5.7 release, the only userland
program using NOPIE is gcc. The reason for this
is its reliance on sbrk(2) in order to map C++ pre-
compiled headers to a fixed location in memory.
OpenBSD’s mmap(2) deliberately makes no such
guarantee, and with the base address of the main
program being randomised the brk space will move
around as well. With no proper serialisation, and
absolute pointers encoded in the on-disk PCH
file,'* it was a choice between losing PCH support
and marking gcc as non-PIE. Given the large per-
formance impact of PCHs and the relatively small
attack surface of a compiler, PIE was disabled for
gcc.

PIE code is typically bigger than standard (relo-
catable) code; therefore, it is only logical to also
turn it off in a space-constrained environment like
the OpenBSD installer ramdisk. In order to
achieve this, it was not sufficient to pass the usual
compiler and linker flags to the build system,
because the system libraries (like libc.a) linked into
the final crunchgen(8) executable still contained the
bigger PIE code. Rather, only the objects that are
actually required by the final binary (determined
using a link map, 1d -M) are now rebuilt with -fno-

pie.

13. See src/share/mk/bsd.own.mk.
14. See src/gnu/gec/libepp/pch.c.

Pascal Stumpf

PIE has to be turned off for profiling (-p, -pg);
this is due to the fact that the gprof(1) tool heavily
relies on a fixed load address for the executable in
order to generate a call graph from the profile data
(gmon.out). In order to deal with position-inde-
pendent code, both in PIEs and shared libraries, the
profiling stack would require a major overhaul.

Issues in the ports tree

Fallout in the OpenBSD ports tree, consisting of
over 7500 packages as of the 5.3 release (the first
using PIE by default) and around 9000 as of today,
was comparatively small. The first class of ports
that needed modifications were compilers: Since
the default behaviour of the linker changed to try
linking with -pie per default, ports compilers
needed to adopt the default-PIE model as well.
Among those are the various copies of gcc, imple-
menting an arch-based switch similar to that of the
base system, as well as LLVM:

- devel/llvm

- lang/gcc/*

+ lang/gfortran

- lang/g77

Other compilers that lack the ability to generate
PIE code, but depend on the system linker

/usr/bin/ld need to pass -nopie to the linker per
default, such as:

« lang/fpc

- lang/ghc

- lang/gprolog
- lang/sbcl

The OpenBSD ports tree also includes bootloaders
and the like, requiring the same treatment as in the
base system:

- sysutils/grub

« sysutils/memtest86+

Some applications insist on using optimised inline
assembler instructions. Sometimes, this code does
not account for the requirements imposed by PIE
(or PIC, for that matter): This is especially a con-
cern on the notoriously register-starved 1386 archi-
tecture. For instance, the 1386 ‘PIC register’ %ebx
must not be clobbered (or saved and restored).
Also, the additional register pressure may render
some asm constraints impossible when compiling

Converting OpenBSD to PIE

for PIC. There are several possible solutions to this
class of problems: Non-PIC-safe assembler should
be properly marked as such by using the builtin
define _ PIC__. Examples in the OpenBSD ports
tree are:

« emulators/xnp2
 multimedia/avidemux

« security/aircrack-ng

Some software even ships PIC-safe versions of its
assembler code that just had to be enabled on
OpenBSD:

« emulators/dosbox

The compiler flag -fomit-frame-pointer can be used
to free up an additional register (%ebp) and allevi-
ate register pressure if necessary:

- emulators/mupen64plus/video-glide64
« emulators/openmsx
« graphics/rawstudio

« x11/mplayer

Finally, some ports can be easily adapted to use
PIC-safe assembly (saving/restoring %ebx across a
cpuid call):

« games/Oad

« games/megaglest

Static PIE

Recent work on PIE in OpenBSD has focused on
enabling static binaries to take advantage of ASLR.
Since those binaries should ideally stay self-hosting,
the relocation needs to be performed in the startup
code of the executable itself. From the already
existing self-relocation code in 1d.so'?, a new vari-
ant of the C runtime (crt0.0) was developed: A
slightly modified version of 1d.so0’s mostly machine-
independent _dl_boot_bind()l(’ is now called by
the machine-dependent startup code.!” Further
adjustments to integrate this support into the
toolchain were necessary: Given the flag combina-
tion ‘-static -pie’, the linker now creates binaries
with the DYNAMIC flag set, but no PT_INTERP
section in order to identify them as static PIE.
Likewise, gcc will link them with the new

15. See src/libexec/ld.so/boot.c.
16. src/lib/csu/boot.h.
17. sre/lib/csu/*/md_init.h, MD_RCRTO_START().

Pascal Stumpf

self-relocating rcrt0.0 upon seeing these flags.
Static PIE is supported on every architecture that
runs as PIE by default.

ASLR in other operating systems

Linux has included a weak form of ASLR since
the 2.6.12 kernel release. At the time of writing,
many mainstream distributions enable this support
by default (Ubuntu'®, Fedora'®, Debian?®, Arch?")
and some even implement a model similar to
OpenBSD where -fpie is the compiler default
(Hardened Gentoo??, Alpine Linux??) or are on the
way (OpenSUSE?*). The distributions who do not
follow the default-PIE approach typically have a list
of high-risk applications that are protected by PIE.

In addition to the much reduced PIE coverage,
there are also known weaknesses in Linux” ASLR
implementation, as exploited by the recently-pub-
lished offset2lib attack:>> While the first object is
loaded at a random location on each execution, the
subsequent objects are then loaded in sequential
order without any additional randomisation. This
weakness means that an address leak of any object
(e.g. the main program when using PIE) discloses
the complete memory layout of the application
code. Mitigations have been proposed by the
authors themselves, but have not yet been merged
into the mainline kernel.*

Large patchsets such as PaX and grsecurity are
often advertised as the solution to the poor state of
Linux ASLR. However, with its state as an external
patchset that has been maintained for over a decade
and lack of adoption in distributions with a reason-
ably large userbase, it remains a poorly-tested con-
figuration — according to the official website, even
tests on non-x86 hardware are lacking.?’

FreeBSD does not yet have ASLR or PIE support;
however, there is work in progress.?® Also, build in-
frastructure support has already been committed®’
using an approach different from that of OpenBSD:

18. https://wiki.ubuntu.com/Security/Features

19. https://fedoraproject.org/wiki/Security_Features_Matrix

20. https://wiki.debian.org/Security/Features

21. https://wiki.archlinux.org/index.php/DeveloperWiki:Se-
curity#PIE

22. http://wiki.gentoo.org/wiki/Hardened/Toolchain

23. https://www.alpinelinux.org/about/

24. https://bugzilla.suse.com/show_bug.cgi?id=912298

25. Marco-Gisbert & Ripoll (2014).

26. Last version of the patch as of Feb 13 2014:

http://marc.info/?1=linux-kernel &m=142065168226565&w=2

27. http://pax.grsecurity.net/
28. https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=181497

Converting OpenBSD to PIE

Instead of a compiler-integrated default, FreeBSD
uses build flags (in this case, via bsd.prog.mk).
The problem with this is obvious even in the initial
commit, since now any binary that is linked to a
static library cannot be PIE. At the least, the
default for static libraries would need to be
switched as well.

NetBSD, from which FreeBSD’s implementation
in progress derives, has added support for PIE and
ASLR in 2007.3° However, it must be enabled on a
per-program basis by the user.>!

Mac OS X has added support for ASLR in ver-
sion 10.5 and enabled PIE by default when target-
ing version 10.7.3? Additionally, the kernel is relo-
cated to a random position on every boot as well
since version 10.8.3

Microsoft Windows has included support for
ASLR since Windows Vista® and has since
steadily improved the feature.>> Since Visual Studio
2010, it is the default (opt-out instead of opt-in).>®

Possible future improvements

ASLR is not perfect. Notably, a process cloned
by fork(2) will have the same address space layout
as the original — a fact that has already been suc-
cessfully exploited using a technique called ‘Blind
ROP’ in order to bruteforce stack canaries and then
find gadget addresses by overwriting the return
address.>” Such attacks are best defended against
by employing a fork+exec pattern instead of simple
fork(2)s. For OpenBSD’s imsg-style daemons
(relayd, httpd, snmpd, iked), a prototype already
exists. However, third-party applications are likely
to remain vulnerable unless upstream authors
decide to take ASLR into account.

30. http://cvsweb.netbsd.org/bsd-
web.cgi/src/sys/kern/kern_pax.c?rev=1.18&content-
type=text/x-cvsweb-markup

31. http://netbsd.gw.com/cgi-bin/man-cgi?securi-
ty+7+NetBSD-current

32. https://developer.apple.com/library/mac/qa/qal788/_index.html

33. http://movies.apple.com/me-
dia/us/0sx/2012/docs/OSX_MountainLion_Core_Tech-
nologies_Overview.pdf

34. https://msdn.microsoft.com/en-us/library/bb430720.aspx

35. https://media.blackhat.com/bh-us-12/Briefin-
gs/M_Miller/BH_US_12_Miiller_Exploit_Mitiga-
tion_Slides.pdf

36. https://msdn.microsoft.com/en-us/li-
brary/bb384887%28v=vs.100%29.aspx

37. Bittau et al. (2014).

Pascal Stumpf Converting OpenBSD to PIE

Conclusion

OpenBSD’s implementation has shown that it is a
feasible strategy to deploy PIE by default. Any
arising issues both in the base system and the ports
collection have been few and comparatively easy to
solve. With the ever-growing sophistication of
ROP attacks, other operating systems are urged to
take inspiration from OpenBSD’s experience and
use a similar model to protect their users. As it
stands today, the open-source community is mostly
behind proprietary software vendors and exploit
writers in the ROP arms race.

Literature

- Bittau, Andrea; Belay, Adam; Mashtizadeh, Ali;
Mazieres, David; Boneh, Dan, Hacking Blind, in:
Proceedings of the 2014 IEEE Symposium on
Security and Privacy, Washington (2014), pp.
227-42.

« Buchanan, Erik; Roemer, Ryan; Shacham, Hover;
Savage, Stefan, When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to
RISC, in: Proceedings of the 15th ACM confer-
ence on Computer and communications security,
New York (2008), pp. 27-38.

+ Checkoway, Stephen; Davi, Lucas; Dmitrienko,
Alexandra; Sadeghi, Ahmad-Reza; Shacham,
Hover; Winandy, Marcel, Return-Oriented Pro-
gramming without Returns, in: Proceedings of the
17th ACM conference on Computer and commu-
nications security, New York (2010), pp. 559-72.

» Marco-Gisbert, Hector; Ripoll, Ismael, On the
Effectiveness of Full-ASLR on 64-bit Linux, pre-
sented at DeepSEC (2014).

« Roemer, Ryan; Buchanan, Erik; Shacham, Hover;
Savage, Stefan, Return-Oriented Programming:
Systems, Languages, and Applications, in: ACM
Transactions on Information and System Security
(TISSEC) 15 (2012), pp. 1-36.

« Shacham, H., The geometry of innocent flesh on
the bone: return-into-libc without function calls
(on the x86), in: Proceedings of the 14th ACM
conference on Computer and communications
security, New York (2007), pp. 552-61.

29. https://svnweb.freebsd.org/base?view=revision&revi-
sion=267233

