
Softraid: OpenBSD’s virtual HBA, with benefits

Marco Peereboom
OpenBSD

Abstract

Prior to softraid(4)1 OpenBSD2 had two RAID
implementations. RAIDframe3 is a full blown RAID
implementation written by Carnegie Mellon University and
ccd(4)4 is a minimal RAID-like I/O transformation engine
developed at the University of Utah.

RAIDframe has not been synchronized with the upstream
codebase for years and has never been enabled by default.
In the OpenBSD project that translates to unsupported code.
The only work done on RAIDframe was an occasional
change to ensure that it still compiles. The RAIDframe
code base is large, complex and intended for research
purposes.

The ccd(4) stack is enabled by default but has also not seen
any significant change or update in years. The
implementation is bare-bones and its use is complex and
error prone.

Both of these implementations interact at the block I/O
layer. This results in the need for implementation specific
tools rather than using system defaults such as bioctl(8)5,
the tool normally used for RAID management.

Due to the above mentioned reasons a new generic
implementation of I/O transformation was devised. It had
to fit the OpenBSD philosophy of being simple and
powerful, which led to the development of a virtual Host
Bus Adapter (HBA) with benefits. These benefits are the
capability to transform any standard SCSI I/O operation
into one or more complex operations, enabling functionality
such as RAID, iSCSI and encryption.

 1 Introduction

The softraid framework interacts in the I/O stack as a
standard SCSI HBA and therefore has to provide exactly the
same entry points as a hardware driver would. It has a top-
half and bottom-half, an IOCTL path and the required
MINPHYS function to determine the maximum size I/O it
can handle. Additionally it adds sensors just like a
hardware HBA would in order to indicate the health of a
virtual disk.

An I/O transformation driver is known as a discipline. A
discipline is essentially a driver that plugs into the softraid
framework and it is responsible for all I/O transformations.

The transformations are arbitrarily complex and span a wide
range of uses. For example, a discipline could mirror an
I/O, stripe an I/O or encrypt an I/O.

All I/Os at some point end up stored on chunks. These
chunks are disk partitions with a RAID type. The RAID
partition type is reused from RAIDframe, however the
format used is incompatible. All chunks contain metadata
at the start of the partition to indicate that it is a softraid
chunk. This metadata also contains all of the information
that a discipline needs to completely describe a virtual disk.
The act of bringing up a virtual disk is known as
“assembling a volume”. An exception to this are target
devices such as the AOE target. Such disciplines do not
appear as a device within the operating system, however
they do use all of the metadata functionality provided by
softraid.

Virtual disks, or volumes, consist of any number of chunks
depending on the discipline. For example, a RAID 0
discipline requires at least 2 chunks. A virtual disk behaves
just like any other SCSI disk attached to the system. All of
the standard utilities and tools can operate on it as if it were
a physical device.

When a SCSI I/O arrives at the softraid framework a
corresponding Work Unit (WU) is created and sent to the
appropriate discipline. A WU can consist of any number of
operations that need to complete before a WU can complete
the original SCSI I/O. An operation is contained in a
Command Control Block (CCB) and is usually, but not
limited to, a physical I/O.

In order to prevent data corruption when I/Os physically
overlap the same LBA range softraid implements a feature
known as “colliders”. When an I/O physically overlaps an
LBA range of any outstanding I/O it will be deferred until
the underlying I/O completes. At completion time, in the
interrupt handler, the collider I/O will be resubmitted. Each
I/O can have at most one collider however, the colliding I/O
can also have a collider forming a chain of ordered I/Os.
This feature is also used during RAIL volume recovery
scenarios where I/Os need to complete in order to form an
“atomic” I/O.

Since softraid pretends to be a HBA it has some limitations
and requirements. A HBA can be called in both process
and interrupt context. Inherently softraid cannot perform
any operation that requires process context, such as

1

tsleep(9)6. In order to properly detect a failed chunk
softraid relies on the underlying hardware and layers to
correctly propagate errors up the stack.

 2 Disciplines

A discipline contains all variables and function pointers for
the softraid framework to handle said discipline. The entry
pointers are divided into two logical areas namely those that
are SCSI and discipline specific. Not all function pointers
are required and some have generic implementations. In
some specific cases the discipline reuses other discipline
functions (e.g. the crypto discipline reuses the RAID 1
sd_set_vol_state).

All sd_ functions deal with the discipline specific parts of
the generic functions. This is a theme that is repeated
throughout all the softraid code.

The required discipline functions are:
• sd_create

• This function is the discipline specific part of
a creation call. This function validates that the
the discipline meets the minimal requirements
and sets several internal variables such as the
discipline name, maximum number of CCBs
per WUs etc.

• sd_assemble
• This function is the discipline specific part of

an assembly call. For most disciplines it
comes down to only filling out the
sd_max_wu variable however disciplines such
as crypto perform additional work to properly
assemble the discipline.

• sd_alloc_resources
• This function allocates all resources the

discipline needs to operate. It generally is
advised to not allocate resources in the I/O
path due to latency.

• sd_free_resources
• This function frees all resources previously

allocated by sd_alloc_resources. This
function is called prior to shutdown of the
discipline.

• sd_ioctl_handler
• The IOCTL handler is used by user-space

tools such as bioctl to display the status of
softraid, its volumes and chunks.

• sd_start_discipline
• This function is only used for target devices

that are not virtual disks. Disciplines such as
the AOE target use this function to bring up
the discipline and make it ready to serve
requests.

• sd_set_chunk_state
• This function is used to modify the state of a

chunk into a valid new state. Chunk state is
what drives the volume state and this function
changes the state of a single chunk and
subsequently calls sd_set_vol_state in order to
alter the volume state.

• sd_set_vol_state
• This functions calculates the new volume state

based on the current state of all chunks. This
function should only be called by
sd_set_chunk_state.

Optional:
• sd_openings

• This function is optional and is called only if
set. It returns a sensible value for openings
that are used to initialize the SCSI-midlayer
when the volume is brought online. The
disciplines that use this function are ones that
tax the system unfairly due to internal
colliding I/Os and therefore cannot use the
sd_max_wu heuristic. Disciplines that make
use of this facility are RAID P (level 4 & 5)
and RAID 6.

The SCSI functions are mostly generic however the read
and write functions are always discipline dependent. The
functions correspond exactly to the SCSI specification as
define by T107.

The SCSI functions that must be implemented are:
• sd_scsi_inquiry. This function returns the

INQUIRY(12) data and is generic providing
sd_create filled in all required fields.

• sd_scsi_read_cap. This function returns the
READ_CAPACITY(25) and
READ_CAPACITY16(9E) data and are generic
providing sd_create filled in all required fields.

• sd_scsi_tur. This generic function returns success
if the volume has been brought up successfully and
it will return failure if the volume subsequently
fails.

• sd_scsi_req_sense. This function is generic and
simply returns the last sense data that was
generated, before zeroing the sense buffer.

• sd_scsi_start_stop. This function is generic and
will bring a volume online or offline depending on
the parameter provided.

• sd_scsi_sync. This function is generic and drains
all outstanding I/O as per the
SYNCHRONIZE_CACHE(35) command.

• sd_scsi_rw. This function is discipline specific
and performs the read or write for the following
SCSI opcodes:

2

◦ READ6(08)
◦ READ(28)
◦ READ16(88)
◦ WRITE6(0a)
◦ WRITE(2a)
◦ WRITE16(8a)

The following sections will briefly detail all currently
implemented disciplines, however these sections will not
question or debate RAID as a technology, nor will they
discuss its relative merit. RAID concepts are generally well
understood and are outside the scope of this paper.

 2.1 RAID 0

The RAID 0 discipline provides striping across disks
without providing any form of redundancy. The strip size is
fixed at 64KB which is optimal for performance with the
OpenBSD block I/O layer.

At less than 500 lines of code, including the license and
comments, this discipline makes for an easy read. It is
considered to be the reference implementation due to its
small size and the lack of complexity.

 2.2 RAID 1

The RAID 1 discipline provides mirroring across N chunks,
whereas most traditional RAID 1 implementations only
support two chunks in a mirror. The softraid
implementation reads single I/Os on a round-robin basis
from all active chunks and writes I/Os to all active chunks.
This presents the user with some interesting choices at
volume creation time. A mostly read-only system can favor
a larger number of chunks at the cost of disk space,
resulting in increased read performance.

Also unlike traditional RAID 1 implementations the softraid
version does not mirror the chunks upon creation. The
reason for this is that all blocks are always written to prior
to being read. If this is not the case then there is a bug in the
layer above softraid, in which case softraid will not behave
any differently to a traditional disk.

The RAID 1 discipline can automatically recover from a
failed chunk if a hot-spare chunk of bigger or equal size is
available at the time of the failure. This process can also be
manually initiated by the user. A rebuild will result in every
block being read from the active chunks and being written
to the rebuild chunk. If a rebuild is aborted due to a reboot
or crash it will resume upon the subsequent boot.

 2.3 RAID P

The RAID P (Parity) discipline provides RAID level 4 and
5. The only difference being that RAID 4 uses a fixed
parity chunk instead of distributing the parity across all
chunks.

The RAID P discipline is currently considered experimental
because it misses scrub and rebuild functionality. Unlike
with RAID 1 discipline RAID P require that all parity is
zeroed before use.

 2.4 RAID 6

Unlike RAID 5, the RAID 6 discipline provides the
capability to have two chunks fail while maintaining
integrity. Additionally, in the case of silent data corruption
it raises the chances of successful recovery since it
potentially can recreate the data from multiple sources.

The RAID 6 discipline is currently considered experimental
because it misses scrub and rebuild functionality. Unlike
with RAID 1 discipline, RAID 6 requires that all parity is
initialized before use.

 2.5 Crypto

This discipline is the most complex. It requires a complex
bring-up procedure that may result in multiple calls between
userland and the kernel. The reason for this is that there are
pieces of code that do not belong in the kernel and in the
case of the crypto discipline this is the encryption of the
keys. This procedure does facilitate additional functionality
such as changing the password to unmask the keys.

The crypto discipline defaults to the AES XTS 256
encryption algorithm. This algorithm is a modified AES
implementation that has a built-in tweak that was especially
developed for disk encryption. The OpenBSD
implementation uses one key per 0.5TB instead of the
recommended 1TB. Currently the implementation has 32
keys which nets a maximum 16TB volume. These numbers
are design decisions and can be easily modified in the
future.

The encryption keys are automatically generated using a
strong random number generator (arc4random_buf(9)8) and
are encrypted based on a user provided password. If the
user opts to use a key disk instead then the keys are written
either unencrypted to the specified chunk. This enables
auto-assembly of a crypto volume during boot. The use-
case is writing the keys on an easily removable device, such
as a USB flash disk, so that an encrypted volume can only
be brought up with this removable disk inserted.

There are still a few things missing in the crypto discipline.
Currently there is only one password that can decrypt the

3

keys, whereas it is desirable to have multiple passwords.
Another thing that is missing is some sort of utility that can
facilitate reading and writing the decrypted keys so that they
can be used in the future for a variety of reasons such as
disaster recovery etc. Currently there is no way to select the
number of bits the encryption algorithm uses even though
the code supports two of them.

 2.6 Missing or incomplete features

Softraid is still under development and there are some major
features missing. On the discipline front there are still some
ideas floating around for the following types:

• Concat. Simply concatenate chunks together to
make a larger disk.

• Stacking. This is a complex problem that needs to
be thought through. The intent is to be able to
“stack” RAID volumes on top of each other to
obtain hybrid types such as RAID 10 or RAID
1CRYPTO.

• AOE has not been actively maintained and needs
to be revisited and brought into the enabled state.
The target code might require additional
framework features.

• iSCSI. There is an active iSCSI development
using a different kernel interface known as
vscsi(4)9 however this code will run mostly in
user-space and does not seem likely to ever support
a target.

• FCoE10. This is currently the buzz of the industry
and having target and initiator code would enable
OpenBSD to play with some really large iron.

• Multipath. This one might not be written using
softraid due to recent addition of the mpath(4)11
driver.

Aside from new disciplines, the framework itself still
requires some additional features. Work has begun on
booting and rooting from softraid disciplines. A working
prototype exists for the OpenBSD/sparc64 platform. Each
architecture has its own challenges and this is still under
investigation. The intent is that the softraid metadata has
the boot loader code as a payload and the user-space
utilities that are used to create bootable disks talk to softraid
and provide the hints required to perform all boot loader
related functions.

A particular problem that arises from using softraid is the
potential for physical disks to move around. To work
around this problem the code to mount filesystems using a
disklabel ID has been written. This code will be integrated
into the tree after the current release (4.7) has been tagged.

The metadata code has hooks to be able to read foreign
metadata from different vendors, however there is currently

no additional support for metadata formats other than
softraid.

 3 Metadata

Softraid uses on disk metadata to record state and persistent
information. All chunks carry near identical metadata
payloads, however each chunk designates which piece they
represent.

The metadata is written at the beginning of the disk at a
constant offset from the beginning of the partition. It has a
fixed block count for size, which limits the amount of
information it can carry. This limitation is currently in the
order of 200 chunks.

All chunks have at least 2 pieces of metadata.
1. sr_metadata. The sr_metadata chunk is divided

into 2 areas; a variant and an invariant area. The
invariant piece contains persistent information that
will not change, such as the volume ID, metadata
version, number of chunks, number of optional
metadata areas, discipline type, etc. The variant
piece contains the invariant checksum, on disk
metadata version, etc.

2. sr_meta_chunk. All chunks are written in sorted
order following the sr_metadata piece. The
sr_meta_chunk also has a variant and an invariant
area. The invariant area contains persistent
information such as the volume ID, chunk ID,
volume UUID, etc. The variant piece contains the
invariant checksum and current chunk status.

The area directly after the last chunk metadata is where the
optional metadata is stored. The number of optional
metadata members are stored in the sr_metadata area.
These optional areas contain things such as crypto keys or
boot loader code, etc.

Each chunk maintains an “on-disk” version number. This
number is used to resolve bring-up and failure conflicts.
The metadata code will only use the latest on-disk version
when bringing up a volume. Every time a change is made
to any metadata component a new version is written to all
chunks. At a minimum, a power-up to power-down of an
auto assembled volume will have increased the on-disk
version of the firmware by two.

The metadata code is written with foreign data formats in
mind. It provides hooks in strategic locations for so called
translation functions. For example, when foreign metadata
is read from a disk it is translated into a softraid legible
format and conversely when written.

 4 Related Work

4

There are quite a few distinct RAID implementations out in
the open source arena, however it is believed that softraid is
the first one to implement it at the SCSI level by presenting
itself as an HBA. The name softraid is actually a poorly
chosen name, however it stuck.

Some other implementations are device-mapper12 on Linux
and GEOM13 on FreeBSD.

 5 Acknowledgments

I would like to acknowledge several people in the
OpenBSD community who have worked on parts of
softraid:

• Joel Sing. Joel has worked tirelessly on softraid
and he implemented several major features. From
code re-factoring to bug hunting to brand new
features, he has done it all. He must have touched
virtually all code in the softraid stack.

• Ted Unangst. Ted, is as usual, responsible for
getting other people to do the work after he shows
a working prototype. He wrote the crypto and
AOE prototypes.

• Hans-Joerg Hoexer. Hans-Joerg wrote the entire
implementation of the crypto discipline during a
hackathon.

• Damien Miller. Before Damien had his second
child he found some time during a hackathon to
help me out with the metadata format. He also
helped Hans-Joerg with the crypto discipline.

• Jordan Hargrave. One day out of nowhere Jordan
handed me a more or less working versions of the
RAID P and RAID 6 disciplines. Since then he
has made many improvements and continues to do
so. He told me “It is wondrous what one can do
with math” after his latest performance
improvements.

Theo de Raadt for his supportive yelling and seemingly
unending energy and devotion to keep OpenBSD running,
allowing me to play in the most intellectually stimulating
open source community in the world. His insight into
operating system design is simply unparalleled and he has
lent me some of it to make several key architectural
decisions in the softraid stack.

I’d like to acknowledge Clarissa, my lovely wife, who puts
up with me and my open source addiction.

Finally, my lovely daughter Holland who always manages
to brighten my day and JT who watches her while I am
coding.

5

References

[1] softraid http://www.openbsd.org/cgi-bin/man.cgi?
query=softraid&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html

[2] OpenBSD http://www.openbsd.org/
[3] RAIDframe http://www.pdl.cmu.edu/RAIDframe/
[4] ccd http://www.openbsd.org/cgi-bin/man.cgi?

query=ccd&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
[5] bioctl http://www.openbsd.org/cgi-bin/man.cgi?

query=bioctl&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
[6] tsleep http://www.openbsd.org/cgi-bin/man.cgi?

query=tsleep&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
[7] T10 http://www.t10.org/
[8] arc4random_buf http://www.openbsd.org/cgi-bin/man.cgi?

query=arc4random_buf&apropos=0&sektion=9&manpath=OpenBSD+Current&arch=i386&format=html
[9] http://www.openbsd.org/cgi-bin/man.cgi?

query=vscsi&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
[10]FCoE http://en.wikipedia.org/wiki/Fibre_Channel_over_Ethernet
[11]mpath(4) http://www.openbsd.org/cgi-bin/man.cgi?

query=mpath&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
[12]Device-mapper http://sources.redhat.com/dm/
[13]GEOM http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/geom.html

